Skip to main content
Log in

Increased nitrous oxide emissions from a drained organic forest soil after exclusion of ectomycorrhizal mycelia

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The aim of this study was to determine how roots and their ectomycorrhizal symbionts affect the fluxes of nitrous oxide (N2O) from nutrient-rich drained organic forest soils. Specifically, the relative impacts of roots and mycorrhizal mycelia on N2O fluxes were investigated using two different trenching treatments, excluding (a) roots or (b) roots and mycorrhizal mycelia, from the soil. N2O fluxes were measured at the soil surface, for 1 year before and 2.5 years after trenching, within the two trenching treatments and on untreated controls. While the exclusion of roots alone did not affect N2O emissions, the simultaneous exclusion of roots and mycorrhizal mycelia doubled N2O emissions, compared to the control plots. Two probable explanations for the increased fluxes were identified: (1) a decreased uptake of nitrogen (N) from the soil, through the mycorrhizal fungi, which increased N availability for the N2O-producing microorganisms, and (2) a decreased uptake of water from the soil, through the mycorrhiza, which increased the soil water content and thus the N2O emissions from denitrification. If the trenching reduced any potential stimulation of N cycling, through rhizodeposition, this mechanism did not outweigh the effects of a discontinued mycorrhizal N and/or water uptake on N2O fluxes. The results of the study emphasise the importance of ectomycorrhiza in regulating N2O emissions from forested organic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ExclR:

Exclusion of roots

ExclRM:

Exclusion of roots and mycorrhizal mycelia

BT:

Before treatment

AT:

After treatment

References

  • Alexandersson H, Eggertsson Karlström C (2001) Temperaturen och nederbörden i Sverige 1961–90: Referensnormaler—utgåva 2. Meteorologi 99. Swedish Meteorological and Hydrological Institute, Norrköping (In Swedish)

    Google Scholar 

  • Alm J, Shurpali NJ, Tuittila ES, Laurila T, Maljanen M, Saarnio S, Minkkinen M (2007) Methods for determining emission factors for the use of peat and peatlands—flux measurements and modelling. Boreal Environ Res 12:85–100

    CAS  Google Scholar 

  • Ambus P (1998) Nitrous oxide production by denitrification and nitrification in temperate forest, grassland and agricultural soil. Eur J Soil Sci 49:495–502

    Article  CAS  Google Scholar 

  • Ambus P, Zechmeister-Boltenstern S, Butterbach-Bahl K (2006) Sources of nitrous oxide emitted from European forest soils. Biogeosci 3:135–145

    Article  CAS  Google Scholar 

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388

    Article  CAS  Google Scholar 

  • Blackmer AM, Bremner JM (1978) Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol Biochem 10:187–191

    Article  CAS  Google Scholar 

  • Buchmann N, Schulze ED, Gebauer G (1995) 15N-ammonium and 15N-nitrate uptake of a 15-year-old Picea abies plantation. Oecologia 102:361–370

    Article  Google Scholar 

  • Dannenmann M, Simon J, Gasche R, Holst J, Naumann PS, Kögel-Knabner I, Knicker H, Mayer H, Schloter M, Pena R, Polle A, Rennenberg H, Papen H (2009) Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech. Soil Biol Biochem 41:1622–1631

    Article  CAS  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Chichester, pp 7–21

    Google Scholar 

  • Firestone MK, Firestone RB, Tiedje JM (1980) Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208:749–751

    Article  PubMed  CAS  Google Scholar 

  • Frank DA, Groffman PM (2009) Plant rhizospheric N processes: what we don’t know and why we should care. Ecology 90:1512–1519

    Article  PubMed  Google Scholar 

  • Hart SC, Sollins P (1998) Soil carbon and nitrogen pools and processes in an old-growth conifer forest 13 years after trenching. Can J For Res 28:1261–1265

    Article  Google Scholar 

  • Hedges LV, Gurevitsch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Heinemeyer A, Hartley IP, Evans SP, Carreira de la Fuente JA, Ineson P (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob Chang Biol 13:1786–1797

    Article  Google Scholar 

  • Henry S, Texier S, Hallet S, Bru D, Dambreville C, Chèneby D, Bizouard F, Germon JC, Philippot L (2008) Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol 10:3082–3092

    Article  PubMed  CAS  Google Scholar 

  • Herman DJ, Johnson KK, Jaeger CH III, Schwartz E, Firestone MK (2006) Root influence on nitrogen mineralization and nitrification in Avena barbata rhizosphere soil. Soil Sci Soc Am J 70:1504–1511

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hobbie JE, Hobbie EA (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology 87:816–822

    Article  PubMed  Google Scholar 

  • Högberg MN, Myrold DD, Giesler R, Högberg P (2006) Contrasting patterns of soil N-cycling in model ecosystems of Fennoscandian boreal forests. Oecologia 147:96–107

    Article  PubMed  Google Scholar 

  • IPCC (ed) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Kasimir-Klemedtsson Å, Klemedtsson L, Berglund K, Martikainen P, Silova J, Oenema O (1997) Greenhouse gas emissions from farmed organic soils: a review. Soil Use Manage 13:245–250

    Article  Google Scholar 

  • Klemedtsson L, Svensson BH, Rosswall T (1987) Dinitrogen and nitrous oxide produced by denitrification and nitrification in soil with and without barley plants. Plant Soil 99:303–319

    Article  CAS  Google Scholar 

  • Klemedtsson L, Kasimir Klemedtsson Å, Moldan F, Weslien P (1997) Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition. Biol Fertil Soils 25:290–295

    Article  CAS  Google Scholar 

  • Klemedtsson L, von Arnold K, Weslien P, Gundersen P (2005) Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Glob Chang Biol 11:1142–1147

    Article  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Mäkiranta P, Hytönen J, Aro L, Maljanen M, Pihlatie M, Potila H, Shurpali NJ, Laine J, Lohila A, Martikainen PJ, Minkkinen K (2007) Soil greenhouse gas emissions from afforested organic soil croplands and cutaway peatlands. Boreal Environ Res 12:159–175

    Google Scholar 

  • Mäkiranta P, Minkkinen K, Hytönen J, Laine J (2008) Factors causing temporal and spatial variation in heterotrophic and rhizospheric components of soil respiration in afforested organic soil croplands in Finland. Soil Biol Biochem 40:1592–1600

    Article  Google Scholar 

  • Marschner H, Häussling M, George E (1991) Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) Karst.]. Trees - Struct Funct 5:14–21

    Google Scholar 

  • Meyer A, Grote R, Polle A, Butterbach-Bahl K (2010) Simulating mycorrhiza contribution to forest C- and N cycling—the MYCOFON model. Plant Soil 327:493–517

    Article  CAS  Google Scholar 

  • Minkkinen K, Laine J, Shurpali NJ, Mäkiranta P, Alm J, Penttila T (2007) Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ Res 12:115–126

    CAS  Google Scholar 

  • Mounier E, Hallet S, Benizri E, Gruet Y, Nguyen C, Piutti S, Robin C, Slezack-Deschaumes S, Martin-Laurent F, Germon JC, Philippot L (2004) Influence of maize mucilage on the diversity and activity of the denitrifying community. Environ Microbiol 6:301–312

    Article  PubMed  CAS  Google Scholar 

  • Påhlsson L (1998) Vegetation types of the Nordic countries. Nordic Council of Ministers, TemaNord, Copenhagen, 510

  • Parmelee RW, Ehrenfeld JG, Tate RL III (1993) Effects of pine roots on microorganisms, fauna, and nitrogen availability in two soil horizons of a coniferous forest spodosol. Biol Fertil Soils 15:113–119

    Article  CAS  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750

    Article  Google Scholar 

  • Philippot L, Hallin S, Börjesson G, Baggs EM (2009) Biochemical cycling in the rhizosphere having an impact on global change. Plant Soil 321:61–81

    Article  CAS  Google Scholar 

  • Phillips RP, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 87:1302–1313

    Article  PubMed  Google Scholar 

  • Prendergast-Miller MT, Baggs EM, Johnson D (2010) Ectomycorhizal fungi and N2O production. In: 19th world congress of soil science. Brisbane, Australia, pp 44–47

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  PubMed  CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Silvan N, Tuittila E-S, Kitunen V, Vasander H, Leine J (2005) Nitrate uptake by Eriophorum vaginatum controls N2O production in a restored peatland. Soil Biol Biochem 37:1519–1526

    Article  CAS  Google Scholar 

  • Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Varner RK, Keller M, Robertson JR, Dias JD, Silva H, Crill PM, McGroddy M, Silver WL (2003) Experimentally induced root mortality increased nitrous oxide emission from tropical forest soils. Geophys Res Lett 30:1144. doi:1110.1029/2002GL016164

    Article  Google Scholar 

  • von Arnold K, Nilsson M, Hånell B, Weslien P, Klemedtsson L (2005) Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biol Biochem 37:1059–1071

    Article  Google Scholar 

  • Weslien P, Kasimir-Klemedtsson Å, Börjesson G, Klemedtsson L (2009) Strong pH influence on N2O and CH4 fluxes from forested organic soil. Eur J Soil Sci 60:311–320

    Article  CAS  Google Scholar 

  • Wolf I, Brumme R (2003) Dinitrogen and nitrous oxide formation in beech forest floor and mineral soils. Soil Sci Soc Am J 67:1862–1868

    Article  CAS  Google Scholar 

  • Yamashita T, Kasuya N, Nishimura S, Takeda H (2004) Effects of root zone trenching on soil nitrogen dynamics in Japanese cedar and cypress plantations. J For Res 9:333–340

    Article  CAS  Google Scholar 

  • Zeller B, Liu J, Buchmann N, Richter A (2008) Tree girdling increases soil N mineralisation in two spruce stands. Soil Biol Biochem 40:1155–1166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank David Allbrand and Per Weslien for their assistance in the field and in the laboratory. We also acknowledge the funding by Tellus (The Centre of Earth Systems Science, University of Gothenburg), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and by the NitroEurope IP under the EC 6th Framework Programme (Contract No. 017841).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Rütting.

Additional information

Responsible Editor: Per Ambus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernfors, M., Rütting, T. & Klemedtsson, L. Increased nitrous oxide emissions from a drained organic forest soil after exclusion of ectomycorrhizal mycelia. Plant Soil 343, 161–170 (2011). https://doi.org/10.1007/s11104-010-0667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0667-9

Keywords

Navigation