Skip to main content
Log in

Solid-phase root zone extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Root exudates are implicated in the chemical defense of plants, but testing such hypotheses has been hindered by the difficulties of quantifying allelochemical concentrations in soil. Here we describe a new, simple method to quantify the dynamics of non-polar root exudates in soil. Novel soil probes were constructed using stainless steel wire inserted into polydimethylsiloxane (PDMS) tubing. Probes were inserted into soil for 24 h, removed and extracted, and analyzed by HPLC. Lipophilic thiophenes produced by roots of Tagetes and Rudbeckia species were chosen as candidate compounds to test the method. Probes recovered microgram quantities of the highly phytotoxic thiophenes 5-(3-buten-1-ynyl)-2,2′-bithienyl (BBT) and α-terthienyl per probe per day from the root zone of Tagetes patula, and distribution of thiophenes beneath plants was spatially and temporally heterogeneous. Flux-proportional sampling of soil provides a means to test hypotheses about the role of root exudates in plant–plant and other interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bais H, Vepachedu R, Gilroy S, Callaway R, Vivanco J (2003) Allelopathy and exotic plant invasion: from molecules and genes to invasive success. Science 301:1377–1380. doi:10.1126/science.1083245

    Article  PubMed  CAS  Google Scholar 

  • Bakker J, Gommers F, Nieuwenhuis I, Wynberg H (1979) Photoactivation of the nematicidal compound α-terthienyl from roots of marigolds (Tagetes spp.). J Biol Chem 254:1841–1844

    PubMed  CAS  Google Scholar 

  • Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747. doi:10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4

    Article  CAS  Google Scholar 

  • Bertin C, Yang X, Weston L (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83. doi:10.1023/A:1026290508166

    Article  CAS  Google Scholar 

  • Birkett M, Chamberlain K, Hooper A, Pickett J (2001) Does allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants? Plant Soil 232:31–39. doi:10.1023/A:1010325801256

    Article  CAS  Google Scholar 

  • Blair A, Hanson B, Brunk G, Marrs R, Westra P, Nissen S, Hufbauer R (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol Lett 8:1039–1047. doi:10.1111/j.1461-0248.2005.00805.x

    Article  Google Scholar 

  • Blair A, Nissen S, Brunk G, Hufbauer R (2006) A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. J Chem Ecol 32:2327–2331. doi:10.1007/s10886-006-9168-y

    Article  PubMed  CAS  Google Scholar 

  • Blum U, Rebbeck J (1989) Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J Chem Ecol 15:917–928. doi:10.1007/BF01015187

    Article  CAS  Google Scholar 

  • Blum U, Wentworth T, Klein K, Worsham A, King L, Gerig T, Lyu S (1991) Phenolic acid content of soils from wheat–no till, wheat–conventional till, and fallow–conventional till soybean cropping systems. J Chem Ecol 17:1045–1068. doi:10.1007/BF01402933

    Article  CAS  Google Scholar 

  • Bohlmann F, Burkhardt T, Zdero C (1973) Naturally occurring acetylenes. Academic, London

    Google Scholar 

  • Callaway R, Aschehoug E (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523. doi:10.1126/science.290.5491.521

    Article  PubMed  CAS  Google Scholar 

  • Callaway R, Ridenour W (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Callaway R, DeLuca T, Belliveau W (1999) Biological-control herbivores may increase competitive ability of the noxious weed Centaurea maculosa. Ecology 80:1196–1201

    Google Scholar 

  • Campbell G, Lambert J, Arnason T, Towers G (1982) Allelopathic properties of α-terthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae. J Chem Ecol 8:961–972. doi:10.1007/BF00987662

    Article  CAS  Google Scholar 

  • Chen Y, Pawliszyn J (2004) Kinetics and the on-site application of standards in a solid-phase microextraction fiber. Anal Chem 76:5807–5815. doi:10.1021/ac0495081

    Article  PubMed  CAS  Google Scholar 

  • Dalton B, Weed S, Blum U (1987) Plant phenolic acids in soils: a comparison of extraction procedures. Soil Sci Soc Am J 51:1515–1521

    CAS  Google Scholar 

  • De Jonge H, Rothenberg G (2005) New device and method for flux-proportional sampling of mobile solutes in soil and groundwater. Environ Sci Technol 39:274–282. doi:10.1021/es049698x

    Article  PubMed  CAS  Google Scholar 

  • De Sciosciolo B, Leopold D, Walton D (1990) Seasonal patterns of juglone in soil beneath Juglans nigra (black walnut) and influence of J. nigra on understory vegetation. J Chem Ecol 16:1111–1130. doi:10.1007/BF01021015

    Article  Google Scholar 

  • Downum K, Towers G (1983) Analysis of thiophenes in the Tageteae (Asteraceae) by HPLC. J Nat Prod 46:98–103. doi:10.1021/np50025a008

    Article  CAS  Google Scholar 

  • Evenhuis A, Korthals G, Molendijk L (2004) Tagetes patula as an effective catch crop for long-term control of Pratylenchus penetrans. Nematology 6:877–881. doi:10.1163/1568541044038632

    Article  Google Scholar 

  • Fischer N, Williamson GB, Weidenhamer J, Richardson D (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20:1355–1380. doi:10.1007/BF02059812

    Article  CAS  Google Scholar 

  • Flematti G, Ghisalberti E, Dixon K, Trengove R (2004) A compound from smoke that promotes seed germination. Science 305:977. doi:10.1126/science.1099944

    Article  PubMed  CAS  Google Scholar 

  • Gallet C, Pellissier F (1997) Phenolic compounds in natural solutions of a coniferous forest. J Chem Ecol 23:2401–2412. doi:10.1023/B:JOEC.0000006682.50061.83

    Article  CAS  Google Scholar 

  • Gommers F, Bakker J (1988) Mode of action of alpha-terthienyl and related compounds may explain the suppressant effects of Tagetes species on populations of free living endoparasitic plant nematodes. Bioact Mol 7:61–69

    CAS  Google Scholar 

  • Hierro J, Callaway R (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39. doi:10.1023/A:1026208327014

    Article  CAS  Google Scholar 

  • Inderjit (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 274:227–236

    Article  CAS  Google Scholar 

  • Inderjit, Callaway R (2003) Experimental designs for the study of allelopathy. Plant Soil 256:1–11. doi:10.1023/A:1026242418333

    Article  CAS  Google Scholar 

  • Inderjit, Pollock J, Callaway R, Holben W (2008) Phytotoxic effects of (±)-catechin in vitro, in soil, and in the field. PLoS One 3:e2536. doi:10.1371/journal.pone.0002536

    Article  PubMed  CAS  Google Scholar 

  • Kimpinski J, Arsenault W, Gallant C, Sanderson J (2000) The effect of marigolds (Tagetes spp.) and other cover crops on Pratylenchus penetrans and on following potato crops. J Nematol 32:531–536

    PubMed  CAS  Google Scholar 

  • Krogh S, Mensz S, Nielsen S, Mortensen A, Christophersen C, Fomsgaard I (2006) Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts. J Agric Food Chem 54:1064–1074. doi:10.1021/jf051147i

    Article  PubMed  CAS  Google Scholar 

  • LaMondia J (2006) Management of lesion nematodes and potato early dying with rotation crops. J Nematol 38:442–448

    PubMed  CAS  Google Scholar 

  • Martin J, Weidenhamer J (1995) Potassium deficiency increases thiophene production in Tagetes erecta. Curr Topics Plant Physiol 15:277–279

    CAS  Google Scholar 

  • Mayer P, Wernsing J, Tolls J, De Maagd P, Sijm D (1999) Establishing and controlling dissolved concentrations of hydrophobic organics by partitioning from a solid phase. Environ Sci Technol 33:2284–2290. doi:10.1021/es9808898

    Article  CAS  Google Scholar 

  • Mayer P, Vaes W, Wijnker F, LeGierse K, Kraaij R, Tolls J, Hermens J (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183. doi:10.1021/es001179g

    Article  CAS  Google Scholar 

  • Mayer P, Tolls J, Hermens J, Mackay D (2003) Equilibrium sampling devices. Environ Sci Technol 37:184A–191A doi:10.1021/es032433i

    Article  PubMed  Google Scholar 

  • Muller C (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull Torrey Bot Club 93:332–351 doi:10.2307/2483447

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M (2006) Seasonal fluctuations in soil phenolics of a coniferous forest: effects on seed germination of different coniferous species. Plant Soil 284:305–318. doi:10.1007/s11104-006-0040-1

    Article  CAS  Google Scholar 

  • Musteata M, Musteata F, Pawliszyn J (2007) Biocompatible solid-phase microextraction coatings based on polyacrylonitrile and solid-phase extraction phases. Anal Chem 79:6903–6911. doi:10.1021/ac070296s

    Article  PubMed  CAS  Google Scholar 

  • Nair M, Whitenack C, Putnam A (1990) 2,2′-Oxo-1,1′-azobenzene: a microbially transformed allelochemical from 2,3-benzoxazolinone. J Chem Ecol 16:353–364. doi:10.1007/BF01021770

    Article  CAS  Google Scholar 

  • Nilsson M, Zackrisson O (1992) Inhibition of Scots pine seedling establishment by Empetrum hermaphroditum. J Chem Ecol 18:1857–1870. doi:10.1007/BF02751109

    Article  CAS  Google Scholar 

  • Odén P, Brandtberg P, Andersson R, Gref R, Zackrisson O, Nilsson M (1992) Isolation and characterization of a germination inhibitor from leaves of Empetrum hermaphroditum Hagerup. Scand J For Res 7:497–502. doi:10.1080/02827589209382742

    Article  Google Scholar 

  • Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205:147–154. doi:10.1023/A:1004335419358

    Article  CAS  Google Scholar 

  • Perry L, Thelen G, Ridenour W, Weir T, Callaway R, Paschke M, Vivanco J (2005) Dual role for an allelochemical: (+/−)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J Ecol 93:1126–1135. doi:10.1111/j.1365-2745.2005.01044.x

    Article  CAS  Google Scholar 

  • Ponder F Jr, Tadros S (1985) Juglone concentration in soil beneath black walnut interplanted with nitrogen-fixing species. J Chem Ecol 11:937–942. doi:10.1007/BF01012079

    Article  CAS  Google Scholar 

  • Popp P, Bauer C, Hauser B, Keil P, Wennrich L (2003) Extraction of polycyclic aromatic hydrocarbons and organochlorine compounds from water: a comparison between solid-phase microextraction and stir bar sorptive extraction. J Sep Sci 26:961–967. doi:10.1002/jssc.200301398

    Article  CAS  Google Scholar 

  • Reynolds L, Potter J, Ball-Coelho B (2000) Crop rotation with Tagetes sp is an alternative to chemical fumigation for control of root-lesion nematodes. Agron J 92:957–966

    Article  Google Scholar 

  • Richardson D, Williamson GB (1988) Allelopathic effects of shrubs of the sand pine scrub on pines and grasses of the sandhills. For Sci 34:592–605

    Google Scholar 

  • Schmidt S (1988) Degradation of juglone by soil bacteria. J Chem Ecol 14:1561–1571. doi:10.1007/BF01012522

    Article  CAS  Google Scholar 

  • Skogley E (1992) The universal bioavailability environment/soil test (UNIBEST). Commun Soil Sci Plant Anal 23:2225–2246. doi:10.1080/00103629209368736

    Article  CAS  Google Scholar 

  • SPSS Inc (2006) SPSS base 15.0 for windows user’s guide. SPSS Inc, Chicago

    Google Scholar 

  • Tang C (1986) Continuous trapping techniques for the study of allelochemicals from higher plants. In: Putnam A, Tang C (eds) The science of allelopathy. Wiley, New York, pp 113–131

    Google Scholar 

  • Tang C, Wat C, Towers G (1987) Thiophenes and benzofurans in the undisturbed rhizosphere of Tagetes patula L. Plant Soil 98:93–97. doi:10.1007/BF02381730

    Article  CAS  Google Scholar 

  • Thijs H (1999) Using density-dependent growth to study the effects of allelopathy. Ph.D. dissertation, University of Cincinnati, Cincinnati, Ohio

  • Topp E, Millar S, Bork H, Welsh M (1998) Effects of marigold (Tagetes sp.) on soil microorganisms. Biol Fertil Soils 27:149–154. doi:10.1007/s003740050413

    Article  Google Scholar 

  • US EPA (2008) Estimation Programs Interface Suite™ for Microsoft® Windows, v3.20. United States Environmental Protection Agency, Washington DC

    Google Scholar 

  • Weidenhamer J (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88:866–875

    Google Scholar 

  • Weidenhamer J (2005) Biomimetic measurement of allelochemical dynamics in the rhizosphere. J Chem Ecol 31:221–236. doi:10.1007/s10886-005-1337-x

    Article  PubMed  CAS  Google Scholar 

  • Weidenhamer J (2007) New approaches to analyse allelochemicals in soil. Allelopathy J 19:135–142

    Google Scholar 

  • Weidenhamer J, Romeo J (1989) Allelopathic properties of Polygonella myriophylla: field evidence and bioassays. J Chem Ecol 15:1957–1969. doi:10.1007/BF01207430

    Article  Google Scholar 

  • Weidenhamer J, Romeo J (2004) Allelochemicals of Polygonella myriophylla: chemistry and soil degradation. J Chem Ecol 30:1061–1078

    Google Scholar 

  • Weidenhamer J, Morton T, Romeo J (1987) Solution volume and seed number: overlooked factors in allelopathic bioassays. J Chem Ecol 13:1481–1491. doi:10.1007/BF01012292

    Article  CAS  Google Scholar 

  • Weston L, Duke S (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22:367–389. doi:10.1080/713610861

    Article  CAS  Google Scholar 

  • White C (1986) Volatile and water-soluble inhibitors of nitrogen mineralization and nitrification in a ponderosa pine ecosystem. Biol Fertil Soils 2:97–104

    Google Scholar 

  • White C (1991) The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Biogeochem 12:43–68. doi:10.1007/BF00002625

    Article  CAS  Google Scholar 

  • Williamson GB, Weidenhamer J (1990) Bacterial degradation of juglone: evidence against allelopathy? J Chem Ecol 16:1739–1742. doi:10.1007/BF01014105

    Article  CAS  Google Scholar 

  • Zackrisson O, Nilsson M (1992) Allelopathic effects of Empetrum hermaphroditum on seed germination of two boreal tree species. Can J Res 22:1310–1319

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Foundation (DEB-0515826). Professors Udo Blum, Inderjit, G. Bruce Williamson and three anonymous reviewers provided helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Weidenhamer.

Additional information

Responsible editor: Inderjit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidenhamer, J.D., Boes, P.D. & Wilcox, D.S. Solid-phase root zone extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322, 177–186 (2009). https://doi.org/10.1007/s11104-009-9905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9905-4

Keywords

Navigation