Skip to main content
Log in

Arsenic uptake and toxicity in plants: integrating mycorrhizal influences

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Arsenic (As) contamination of soil and water is a global problem that impacts on many areas of biology. This review firstly covers aspects of soil chemistry and soil-plant interactions relevant to the ways plants take up As (particularly arsenate (As(V)) from aerobic soils, with especial attention to As-phosphorus (P) interactions. It then assesses the extent to which studies of plant As tolerance based on short-term uptake of As(V) from nutrient solutions can be extrapolated to longer-term growth in contaminated soil. Mycorrhizal symbioses are then highlighted, because they are formed by ~ 90% of higher plants, often with increased uptake of phosphate (Pi) compared with non-mycorrhizal (NM) counterparts. It is therefore likely that mycorrhizas influence As(V) uptake. Published work shows that arbuscular mycorrhizal (AM) plants (the most common mycorrhizal type) have higher P/As ratios than NM plants, and this would be expected to affect sensitivity to soil As. We discuss ways in which higher P/As selectivity might result from differential operation of P and As uptake pathways in AM compared with NM plants, taking into account new understanding of P uptake mechanisms. We also give suggestions for future research required to increase understanding of mechanisms of As(V) uptake, and its interactions with plant P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002a) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240:311–319

    Article  CAS  Google Scholar 

  • Abedin MJ, Feldman J, Meharg AA (2002b) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Ahmed FRS, Killham K, Alexander I (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 258:33–41

    Article  CAS  Google Scholar 

  • Al Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 34:2181–2186

    Article  PubMed  CAS  Google Scholar 

  • Anastasia F, Kender W (1973) Influence of soil arsenic on the growth of lowbush blueberry. J Environ Qual 2:335–337

    CAS  Google Scholar 

  • Asher CJ, Reay PF (1979) Arsenic uptake by barley seedlings. Aust J Plant Physiol 6:459–466

    Article  CAS  Google Scholar 

  • Bieleski RL, Lauchli A (1992) Phosphate uptake, efflux and deficiency in the water fern, Azolla. Plant Cell Environ 15:665–673

    Article  CAS  Google Scholar 

  • Bucher M (2006) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  Google Scholar 

  • Burleigh SH, Cavagnaro TR, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601

    Article  PubMed  CAS  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1:1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Tang XY, Zhu YG et al (2005) Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Sci China Ser C 48:156–164

    Article  CAS  Google Scholar 

  • Chen BD, Xiao X, Zhu YG et al (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379:226–234

    Article  PubMed  CAS  Google Scholar 

  • Christophersen HM, Smith SE, Pope S, Smith FA (2009) No evidence for competition between arsenate and phosphate for uptake from soil by medic or barley. Env Int 35:485–490

    Article  CAS  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2009) Arbuscular mycorrhizal colonisation reduces arsenate uptake in barley via down-regulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol in press

  • Clark GT, Dunlop J, Phung HT (2000) Phosphate absorption by Arabidopsis thaliana: interactions between phosphorus status and inhibition by arsenate. Aust J Plant Physiol 27:959–965

    CAS  Google Scholar 

  • Covey RP, Koch BL, Larsen HJ (1981) Influence of vesicular arbuscular mycorrhizae on the growth of apple and corn in low-phosphorous soil. Phytopathology 71:712–715

    Article  CAS  Google Scholar 

  • Duan GL, Zhou Y, Tong YP et al (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174:311–321

    Article  PubMed  CAS  Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E et al (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554

    Article  PubMed  CAS  Google Scholar 

  • Esteban E, Carpena RO, Meharg AA (2003) High-affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively insensitive to phosphate status. New Phytol 158:165–173

    Article  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotech 99:259–278

    Article  CAS  Google Scholar 

  • Geng CN, Zhu YG, Hu Y et al (2006) Arsenate causes differential acute toxicity in two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279:297–306

    Article  CAS  Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    Article  PubMed  CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Ag (Peracicaba, Braz.) 63:90–101

    CAS  Google Scholar 

  • Gonzalez-Chavez C, Harris PJ, Dodd J et al (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171

    Article  CAS  Google Scholar 

  • Grace EJ (2008) Functional characterisation of phosphorus uptake pathways in a non-responsive arbuscular mycorrhizal host. PhD Thesis, School of Earth and Environmental Sciences. The University of Adelaide, Adelaide, Australia

  • Grace EJ, Cotsaftis O, Smith FA et al (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonisation, fungal P uptake or effects on plant phosphate transporter expression. New Phytol 181:938–949

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic-phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  PubMed  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth GC, Meharg AA (2001) Copper-and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Woods C, Meharg AA (2002) Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus? New Phytol 155:219–225

    Article  CAS  Google Scholar 

  • Huang CY, Barker SJ, Langridge P et al (2000) Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots. Plant Physiol 124:415–422

    Article  PubMed  CAS  Google Scholar 

  • Hurd-Karrer AM (1939) Antagonism of certain elements essential to plants toward chemically related toxic elements. Plant Physiol 14:9–29

    Article  PubMed  CAS  Google Scholar 

  • Ipsilantis I, Sylvia DM (2007) Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Appl Soil Ecol 35:261–271

    Article  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  PubMed  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Karandashov V, Nagy R, Wegmüller S et al (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 101:6285–6290

    Article  PubMed  CAS  Google Scholar 

  • Khan AG, Belik M (1995) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In: Varma A, Hock B (eds) Mycorrhiza, Structure, Function. Molecular Biology and Biotechnology. Springer Verlag, Berlin Heidelberg, pp 627–666

    Google Scholar 

  • Knudson JA, Meikle T, DeLuca TH (2003) Role of mycorrhizal fungi and phosphorus in the arsenic tolerance of basin wildrye. J Environ Qual 32:2001–2006

    PubMed  CAS  Google Scholar 

  • Lambert DH, Baker DE, Cole H Jr (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Sci Soc Am J 43:976–980

    CAS  Google Scholar 

  • Lee DA, Chen A, Schroeder JI (2003) ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. Plant J 35:637–646

    Article  PubMed  CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2005) Interactions of mycorrhizal fungi with Pteris vitatta (As hyperaccumulator) in As-contaminated soils. Environ Poll 139:1–8

    Article  CAS  Google Scholar 

  • Li HY, Smith SE, Holloway RE et al (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and response to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact 11:14–22

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhu YG, Chen BD et al (2005a) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15:187–192

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhu YG, Chen BD et al (2005b) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environ Int 31:867–873

    Article  PubMed  CAS  Google Scholar 

  • Logoteta B, Xu XY, Macnair MR et al (2009) Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus. New Phytol. doi:10.1111/j.1469-8137.2009.02841.x

    PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  PubMed  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  • Macnair MR, Cumbes Q (1987) Evidence that arsenic tolerance in Holcus lanatus is caused by an altered phosphate uptake system. New Phytol 107:387–394

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Mascher R, Lippmann B, Holzinger S et al (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotech 14:277–282

    Article  PubMed  CAS  Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem 40:126–134

    Article  CAS  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA (2004) Arsenic in rice - understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate-tolerant Holcus lanatus. New Phytol 116:29–35

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992a) Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus L. Heredity 69:336–341

    CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992b) Polymorphism and physiology of arsenate tolerance in Holcus lanatus L. from an uncontaminated site. Plant Soil 146:219–225

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992c) Suppression of the high-affinity phosphate-uptake system - a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Meharg AA, Naylor J, Macnair MR (1994a) Phosphorus nutrition of arsenate-tolerant and nontolerant phenotypes of velvetgrass. J Environ Qual 23:234–238

    Article  CAS  Google Scholar 

  • Meharg AA, Bailey K, Breadmore K et al (1994b) Biomass allocation, phosphorus nutrition and vesicular-arbuscular mycorrhizal infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. Plant Soil 160:11–20

    Article  CAS  Google Scholar 

  • Nagy F, Karandashov V, Chague W et al (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  PubMed  CAS  Google Scholar 

  • Paivoke AEA, Simola LK (2001) Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content and phytase activity. Ecotox Environ Safe 49:111–121

    Article  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C et al (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Pickering IJ, George MJ, Smith RD et al (2000) Reduction and coordination of arsenic in Indian Mustard. Plant Physiol 122:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Pigna M, Cozzolino V, Violante A et al (2009) Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Pollut 197:371–380

    Article  CAS  Google Scholar 

  • Pope S (2006) Increased phosphate supply and mycorrhizal colonisation increase growth and P status of Medicago truncatula in arsenic-contaminated soil but do not reduced As uptake. In: B Env Sci (Honours) Thesis, Soil and Land Systems, School of Earth and Environmental Sciences. The University of Adelaide, Adelaide, Australia

  • Pope S, Smith SE, Christophersen HM et al (2007) Arsenic uptake by Medicago truncatula: P supply and arbuscular mycorrhizal (AM) colonization do not reduce specific uptake from soil. In: Zhu YG, Lepp N, Naidu R (eds) Biogeochemistry of Trace Elements: Environmental Protection. Remediation and Human Health. Tsinghua University Press, Beijing, pp 863–864

    Google Scholar 

  • Poulsen KH, Nagy R, Gao LL et al (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–453

    Article  PubMed  CAS  Google Scholar 

  • Quaghebeur M, Rengel Z (2003) The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Plant Physiol 132:1600–1609

    Article  PubMed  CAS  Google Scholar 

  • Quaghebeur M, Rengel Z (2005) Arsenic speciation governs arsenic uptake and transport in terrestrial plants. Microchim Acta 151:141–152

    Article  CAS  Google Scholar 

  • Raab A, Ferreira K, Meharg AA et al (2007) Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? J Exp Bot 58:1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Daram P, Brunner S et al (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    Article  PubMed  CAS  Google Scholar 

  • Sharples JM, Chambers SM, Meharg AA et al (2000) Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol 148:153–162

    Article  CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM et al (1999) Arsenate sensitivity in ericoid and ectomycorrhizal fungi. Environ Toxicol Chem 18:1848–1855

    Article  CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM et al (2001) Arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 151:265–270

    Article  CAS  Google Scholar 

  • Shin H, Shin HS, Dewbre GR et al (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava MM et al (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Smith E, Smith J, Naidu R (2006) Distribution and nature of arsenic along former railway corridors of South Australia. Sci Tot Environ 363:175–182

    Article  CAS  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol doi:10.1111/j.1469-8137.2008.02753.x

  • Smith FW, Mudge SR, Rae AL et al (2003a) Phosphate transport in plants. Plant Soil 248:71–83

    Article  CAS  Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683–694

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, New York, London, Burlington, San Diego

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003b) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Su YH, McGrath SP, Zhu YG et al (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441

    Article  PubMed  CAS  Google Scholar 

  • Trappe JM, Stahly EA, Benson NR et al (1973) Mycorrhizal deficiency of apple trees in high arsenic soils. Hortscience 8:52–53

    Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotech 25:158–165

    Article  CAS  Google Scholar 

  • Trotta A, Falaschi P, Cornara L et al (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vitatta L. Chemosphere 65:74–81

    Article  PubMed  CAS  Google Scholar 

  • Tuan LQ, Huong TTT, Hong PTA et al (2008) Arsenic (V) induces a fluidization of algal cell and liposome membranes. Toxicol In Vitro 22:1632–1638

    Article  CAS  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate- and vanadate- associated changes of electrical membrane potential and phosphate transport in Lemna gibba L. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Ultra VU, Tanaka S, Sakurai K et al (2007a) Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Sci Plant Nutr 53:499–508

    Article  CAS  Google Scholar 

  • Ultra VU, Tanaka S, Sakurai K et al (2007b) Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 290:29–24

    Article  CAS  Google Scholar 

  • Vetterlein D, Szegedi K, Ackerman J et al (2007) Competitive mobilization of phosphate and arsenate associated with goethite by root activity. J Environ Qual 36:1811–1820

    Article  PubMed  CAS  Google Scholar 

  • Wang JR, Zhao FJ, Meharg AA et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  PubMed  CAS  Google Scholar 

  • Wells BR, Glilmour JT (1977) Sterility in rice cultivars as influenced by MSMA rate and water management. Agron J 69:451–454

    Article  CAS  Google Scholar 

  • Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178

    Article  PubMed  CAS  Google Scholar 

  • Woolson EA, Axley JH, Kearney PC (1973) The chemistry and phytotoxicity of arsenic in soils. II effects of time and phosphorus. Soil Sci Soc Am. Proc 37:254–259

    Google Scholar 

  • Wright W, Fitter A, Meharg A (2000) Reproductive biomass in Holcus lanatus clones that differ in their phosphate uptake kinetics and mycorrhizal colonization. New Phytol 146:493–501

    Article  Google Scholar 

  • Xia YS, Chen BD, Christie P et al (2007) Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. J Environ Sci 19:1245–1251

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA et al (2008) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA et al (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our research is funded by the Australian Research Council. We are grateful to Rebecca Stonor and Maria Manjarrez who have provided technical support for our project. We thank many friends and colleagues for helpful discussions and the anonymous referees for detailed appraisals of the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally E. Smith.

Additional information

Responsible Editor: Yongguan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S.E., Christophersen, H.M., Pope, S. et al. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327, 1–21 (2010). https://doi.org/10.1007/s11104-009-0089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0089-8

Keywords

Navigation