Skip to main content

Advertisement

Log in

Assessing the effect of air-drying and storage on microbial biomass and community structure in paddy soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To understand the effect of air-drying pre-treatment, refrigeration, and freezing storages on microbial biomass and community structure in paddy soils, we measured total phospholipid fatty acid (PLFA) and PLFA profile after five treatments, including flooded (F), flooded-freezing (FF), flooded-air-drying (FAD), flooded-air-drying-freezing (FADF), and flooded-air-drying-refrigeration (FADR). FF and FADF treatments were followed by freeze-drying before analyzing the total PLFA and PLFA profile. The results showed that FF and FADF treatments increased the content of polyunsaturated fatty acids, but decreased that of branched chain saturated fatty acids. FAD treatment increased the concentrations of bacterial, aerobic bacterial, stress, Type I methanotrophs, and Gram-negative bacterial biomarkers, while it decreased the concentration of hydroxy fatty acid group and the ratios of cyclopropyl saturated fatty acids to their monoenoic precursors. FADR significantly decreased the concentration of total PLFA and all PLFA groups except for the mono-unsaturated fatty acid group. Statistical analysis with correspondence analysis showed that air-drying and storage changed the microbial community structure, but the effect of air-drying on soil microbial community structure was more pronounced than that of freezing. These results indicated that deep freezing followed by freeze-drying may be the most recommendable procedure before soil biochemical analysis in flooded paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bending GD, Turner MK, Rayns F, Marx M-C, Wood M (2004) Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem 36:1785–1792. doi:10.1016/j.soilbio.2004.04.035

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WM (1959) A rapid method of lipid extraction and purification. Can J Biochem Physiol 39:911–917

    Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrates utilization patterns. Microb Ecol 35:265–278. doi:10.1007/s002489900082

    Article  PubMed  CAS  Google Scholar 

  • Drenovsky RE, Graham D, Vo KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol 48:424–430. doi:10.1007/s00248-003-1063-2

    Article  PubMed  CAS  Google Scholar 

  • Federle TW, White DC (1982) Preservation of estuarine sediments for lipid analysis of biomass and community structure of microbiota. Appl Environ Microbiol 44(5):1166–1169

    PubMed  CAS  Google Scholar 

  • Fierer N, Schime JP, Holden PA (2003) Influence of drying-rewetting frequency on Soil bacterial community structure. Microb Ecol 45:63–71. doi:10.1007/s00248-002-1007-2

    Article  PubMed  CAS  Google Scholar 

  • Frostegård A, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  Google Scholar 

  • Gill JS, Sivasithamparam K, Smettem KRJ (2001) Effect of soil moisture at different temperatures on Rhizoctonia root rot of wheat seedlings. Plant Soil 231:91–96. doi:10.1023/A:1010394119522

    Article  CAS  Google Scholar 

  • Guckert JB, Antworth CP, Nichols PD et al (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158

    CAS  Google Scholar 

  • Haldeman DL, Amy PS, White DC, Ringelberg D (1994) Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4 degrees. Appl Environ Microbiol 60:2697–2703

    PubMed  CAS  Google Scholar 

  • Haldeman DL, Amy PS, Ringelberg D, White DC, Garen RE, Ghiorse WC (1995) Microbial growth and resuscitation alter community structure after perturbation. FEMS Microbiol Ecol 17:27–38. doi:10.1111/j.1574-6941.1995.tb00124.x

    Article  CAS  Google Scholar 

  • Harris RF (1981) Effect of water potential on microbial growth and activity in soils. In: Parr JF, Gardner WR, Elliott LF et al (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, WI, pp 23–9

    Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36. doi:10.1016/S0929-1393(00)00069-X

    Article  Google Scholar 

  • Iyyemperumal K, Shi W (2007) Soil microbial community composition and structure: residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate. Plant Soil 292:233–242. doi:10.1007/s11104-007-9219-3

    Article  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil: I. Fumigation with chloroform. Soil Biol Biochem 8:167–177. doi:10.1016/0038-0717(76)90001-8

    Article  CAS  Google Scholar 

  • Joergensen RG, Brookes PC, Jenkinson DS (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 8:209–213

    Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    PubMed  CAS  Google Scholar 

  • Kieft TL, Ringelberg DB, White DC (1994) Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Appl Environ Microbiol 60(9):3292–3299

    PubMed  CAS  Google Scholar 

  • Kieft TL, Wilch E, O’connor K, Ringelberg DB, White DC (1997) Survival and phospholipid fatty acid profiles of surface and subsurface bacterial in natural sediment microcosms. Appl Environ Microbiol 63(4):1531–1542

    PubMed  CAS  Google Scholar 

  • Laczko E, Rudaz A, Aragno A (1997) Diversity of anthropogenically influenced or disturbed soil microbial communities. In: Insam H, Rangger A (eds) Microbial communities, functional versus structural approaches. Springer, Berlin Heidelberg New York, pp 57–67

    Google Scholar 

  • Macalady JL, McMillan AMS, Dickens AF, Dickens AF, Tyler SC, Scow KM (2002) Population dynamics of Type I and II methanotrophic bacteria in rice soils. Environ Microbiol 4(3):148–157. doi:10.1046/j.1462-2920.2002.00278.x

    Article  PubMed  Google Scholar 

  • Nielsen P, Petersen SO (2000) Ester-linked polar lipid fatty acid profiles of soil microbial communities: a comparison of extraction methods and evaluation of interference from humic acids. Soil Biol Biochem 32:1241–1249. doi:10.1016/S0038-0717(00)00041-9

    Article  CAS  Google Scholar 

  • Parkes RJ, Taylor J (1983) The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine-sediments. Estuar Coast Shelf Sci 16:173–189. doi:10.1016/0272-7714(83)90139-7

    Article  CAS  Google Scholar 

  • Petersen SO, Klug MJ (1994) Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl Environ Microbiol 60(7):2421–2430

    PubMed  CAS  Google Scholar 

  • Pulleman M, Tietema A (1999) Microbial C and N transformations during and rewetting of coniferous forest floor material. Soil Biol Biochem 31:275–285. doi:10.1016/S0038-0717(98)00116-3

    Article  CAS  Google Scholar 

  • Sharma S, Szele Z, Schilling R, Munch JC, Schloter M (2006) Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microbiol 72:2148–2154. doi:10.1128/AEM.72.3.2148-2154.2006

    Article  PubMed  CAS  Google Scholar 

  • Sørensen LH (1974) Rate of decomposition of organic matter in soil as influenced by repeated air drying-rewetting and repeated additions of organic matter. Soil Biol Biochem 6:287–292. doi:10.1016/0038-0717(74)90032-7

    Article  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (1999) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Tan KH (1996) Soil sampling, preparation, and analysis. Marcel Dekker, New York, pp 17–26

    Google Scholar 

  • Walker VK, Palmer GR, Voordouw G (2006) Freeze-thaw tolerance and clues to the winter survival of a soil community. Appl Environ Microbiol 72:1784–1792. doi:10.1128/AEM.72.3.1784-1792.2006

    Article  PubMed  CAS  Google Scholar 

  • Wang XC, Lu Q (2006) Effect of waterlogged and aerobic incubation on enzyme activities in paddy soil. Pedosphere 16(4):532–539. doi:10.1016/S1002-0160(06)60085-4

    Article  CAS  Google Scholar 

  • Wu J, Brookes PC (2005) The proportional mineralization of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol Biochem 37:507–515. doi:10.1016/j.soilbio.2004.07.043

    Article  CAS  Google Scholar 

  • Xue D, Yao HY, Huang CY (2006) Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant Soil 288:319–331. doi:10.1007/s11104-006-9123-2

    Article  CAS  Google Scholar 

  • Xue D, Yao HY, Ge DY, Huang CY (2008) Soil microbial community structure in diverse land use systems: a comparative study using BIOLOG, DGGE and PLFA analyses. Pedosphere 18(5):653–663

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY (1994) Fatty acid patterns of phospholipids and lipopolysaccharides in environmental samples. Chemosphere 28:391–411. doi:10.1016/0045-6535(94)90136-8

    Article  CAS  Google Scholar 

  • Zornoza R, Guerrero J, Mataix-Solera GJ, Arcenegui V, Carcia-Orenes F, Mataix-Beneyto J (2006) Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biol Biochem 38:2125–2134. doi:10.1016/j.soilbio.2006.01.010

    Article  CAS  Google Scholar 

  • Zornoza R, Guerrero J, Mataix-Solera GJ, Arcenegui V, Carcia-Orenes F, Mataix-Beneyto J (2007) Assessing the effects of air-drying and rewetting pre-treatment on soil microbial biomass, basal respiration, metabolic quotient and soluble carbon under Mediterranean conditions. Eur J Soil Biol 43:120–129. doi:10.1016/j.ejsobi.2006.11.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 30871600 and 30671207). We thank Guo Chen in taking soil samples, and appreciate the assistance of Emily Dell for her comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiying Yao.

Additional information

Responsible editor: David E. Crowley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yao, H. & Huang, C. Assessing the effect of air-drying and storage on microbial biomass and community structure in paddy soils. Plant Soil 317, 213–221 (2009). https://doi.org/10.1007/s11104-008-9803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9803-1

Keywords

Navigation