Skip to main content

Advertisement

Log in

Rhizosphere soil microbial community structure and microbial activity in set-aside and intensively managed arable land

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The effects of plant species which frequently occur in set-aside arable land on rhizosphere soil properties were assessed and compared to rhizosphere soil of Secale cereale (Rye) grown on an intensively managed arable soil (sandy Cambisol, Saxony, NE-Germany). On a 6 year old set-aside arable land rhizosphere soil samples were taken under Agropyron repens, Cirsium arvense and Rumex acetosa, the most frequent plant species, and under the leguminous plant species Vicia villosa. Phospholipid fatty acid analysis (PLFA) has been used to characterise the structure of the soil microbial community. Carbon mineralisation rates as well as gross (15N isotope pool dilution method) and net nitrogen mineralisation rates were determined as indicator of microbial activity. In intensive managed plots a rhizosphere effect was obvious in higher nutrient contents, gross N mineralisation rates and higher relative abundances of fungi and protozoa in Rye rhizosphere compared to bulk soil. Plant species altered rhizosphere microbial activity. Lowest gross N mineralisation and gross NH4 consumption rates were detected in Rye rhizosphere soil. Both rates revealed high positive correlations with dissolved organic carbon (extracted with KCl) and soil pH. The rhizosphere soil microbial communities of the three dominant plant species of the set-aside arable land (Agropyron, Cirsium, Rumex) were more similar to each other than to Vicia grown on the same set-aside plots and Rye grown on intensive managed plots. The highest number of non-identified PLFAs detected in Vicia rhizosphere soil suggests that microbial diversity was highest. Differences in quantity and quality of Vicia rhizodeposition, especially higher N contents, seem to induce the higher microbial activity and different microbial community structure. The rhizosphere soil of the dominant plant species on the set-aside and intensively managed arable land reflected the differences in bulk soil properties (obtained in a previous study) between the two management systems (e.g. pH, gross N mineralisation, metabolic quotient, PLFA marker characteristic of G− bacteria and fungi).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey VL, Smith JL, Bolton H (2003) Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal: bacterial ratios in soil. Biol Fertil Soils 38:154–160 doi:10.1007/s00374-003-0620-7

    Article  CAS  Google Scholar 

  • Barraclough D (1995) 15N isotope dilution techniques to study soil nitrogen transformations and plant uptake. Fert Res 42:185–192 doi:10.1007/BF00750513

    Article  CAS  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230 doi:10.1007/s10530-004-3856-8

    Article  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of aritficial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192 doi:10.1016/S0038-0717(03)00179-2

    Article  CAS  Google Scholar 

  • Bausenwein U, Millard P, Thornton B, Raven JA (2001) Seasonal nitrogen storage and remobilization in the forb Rumex acetosa. Funct Ecol 15:370–377 doi:10.1046/j.1365-2435.2001.00524.x

    Article  Google Scholar 

  • Böhm C (2005) Dynamik des Stickstoffhaushaltes einer Sand-Braunerde nach vierjähriger Brache in Abhängigkeit von der landwirtschafltichen Nutzungsintensität. UFZ-Umweltforschungszentrum Leipzig-Halle GmbH. pp. 341

  • Carrera LM, Buyer JS, Vinyard B, Abdul-Baki AA, Sikora A, Teasdale JR (2007) Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Appl Soil Ecol 37:247–255 doi:10.1016/j.apsoil.2007.08.003

    Article  Google Scholar 

  • Choi B, Daimon H (2008) Effect of hairy vetch incorporated as green manure on growth and N uptake of Sorghum crop. Plant Prod Sci 11:211–216 doi:10.1626/pps.11.211

    Article  Google Scholar 

  • Cookson WR, Osman M, Marschner P, Abaye DA, Clark I, Murphy DV et al (2007) Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biol Biochem 39:744–756 doi:10.1016/j.soilbio.2006.09.022

    Article  CAS  Google Scholar 

  • Critchley CNR, Fowbert JA (2000) Development of vegetation on set-aside land for up to nine years from a national perspective. Agric Ecosyst Environ 79:159–174 doi:10.1016/S0167-8809(99)00155-3

    Article  Google Scholar 

  • de Ridder-Duine AS, Kowalchuk GA, Klein Gunnewiek PJA, Smant W, van Veen JA, de Boer W (2005) Rhizsophere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357 doi:10.1016/j.soilbio.2004.08.005

    Article  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270 doi:10.1146/annurev.phyto.42.012604.135455

    Article  PubMed  CAS  Google Scholar 

  • Georgieva S, Christensen S, Stevnbak K (2005) Nematode succession and microfauna-microorganism interactions during root residue decomposition. Soil Biol Biochem 37:1763–1774 doi:10.1016/j.soilbio.2005.02.010

    Article  CAS  Google Scholar 

  • Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–385 doi:10.1002/1522-2624(200008)163:4<381::AID-JPLN381>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K et al (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84 doi:10.1016/S0929-1393(03)00098-2

    Article  Google Scholar 

  • Hamer U, Makeschin F, Stadler J, Klotz S (2008) Soil organic matter and microbial community structure in set-aside and intensively managed arable soils in NE-Saxony, Germany. Appl. Soil Ecol doi:10.1016/j.apsoil.2008.07.001

  • Hoyle FC, Murphy DV, Fillery IRP (2006) Temperature and stubble management influence microbial CO2-C evolution and gross N transformation rates. Soil Biol Biochem 38:71–80 doi:10.1016/j.soilbio.2005.04.020

    Article  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905 doi:10.1016/S0038-0717(03)00120-2

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520 doi:10.1023/A:1020565523615

    Article  PubMed  Google Scholar 

  • Kozdrój J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417 doi:10.1016/S0038-0717(00)00058-4

    Article  Google Scholar 

  • Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM et al (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863 doi:10.1128/AEM.68.4.1854-1863.2002

    Article  PubMed  CAS  Google Scholar 

  • Landi L, Valori F, Ascher J, Renella G, Falchini L, Nannipieri P (2006) Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biol Biochem 38:509–516 doi:10.1016/j.soilbio.2005.05.021

    Article  CAS  Google Scholar 

  • Marschner P, Yang C-H, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445 doi:10.1016/S0038-0717(01)00052-9

    Article  CAS  Google Scholar 

  • Marschner P, Grierson PF, Rengel Z (2005) Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia. Appl Soil Ecol 28:191–201 doi:10.1016/j.apsoil.2004.09.001

    Article  Google Scholar 

  • Montealegre CM, van Kessel C, Russelle MP, Sadowsky MJ (2002) Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant Soil 243:197–207 doi:10.1023/A:1019901828483

    Article  CAS  Google Scholar 

  • Niu HB, Liu WX, Wan FH, Liu B (2007) An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294:73–85 doi:10.1007/s11104-007-9230-8

    Article  CAS  Google Scholar 

  • Ratledge C, Wilkinson SG (1988) Fatty acids, related and derived lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic, San Diego, pp 23–53

    Google Scholar 

  • Rosecrance RC, McCarty GW, Shelton DR, Teasdale JR (2000) Denitrification and N mineralization from hairy vetch (Vicia villosa Roth) and rye (Secale cereale L.) cover crop monocultures and bicultures. Plant Soil 227:283–290 doi:10.1023/A:1026582012290

    Article  CAS  Google Scholar 

  • Sharma S, Aneja MK, Mayer J, Schloter M, Munch JC (2004) RNA fingerprinting of microbial community in the rhizosphere soil of grain legumes. FEMS Microbiol Ecol 240:181–186 doi:10.1016/j.femsle.2004.09.026

    Article  CAS  Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155 doi:10.1016/j.apsoil.2007.01.004

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751 doi:10.1128/AEM.67.10.4742-4751.2001

    Article  PubMed  CAS  Google Scholar 

  • Söderberg KH, Probanza A, Jumpponen A, Baath E (2004) The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil- and cfu-PLFA techniques. Appl Soil Ecol 25:135–145 doi:10.1016/j.apsoil.2003.08.005

    Article  Google Scholar 

  • Sotherton NW (1998) Land use changes and the decline of farmland wildlife: an appraisal of the set-aside approach. Biol Conserv 83:259–268 doi:10.1016/S0006-3207(97)00082-7

    Article  Google Scholar 

  • Steer J, Harris JA (2000) Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol Biochem 32:869–878 doi:10.1016/S0038-0717(99)00219-9

    Article  CAS  Google Scholar 

  • Stephan A, Meyer AH, Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88:988–998 doi:10.1046/j.1365-2745.2000.00510.x

    Article  Google Scholar 

  • Sturz AV, Matheson BG, Arsenault W, Kimpinski J, Christie BR (2001) Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can J Microbiol 47:1013–1024 doi:10.1139/cjm-47-11-1013

    Article  PubMed  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707 doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Google Scholar 

  • Wessel WW, Tietema A (1992) Calculating gross N transformation rates of 15N pool dilution experiments with acid forest litter: analytical and numerical approaches. Soil Biol Biochem 24:931–942 doi:10.1016/0038-0717(92)90020-X

    Article  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48 doi:10.1016/j.soilbio.2007.08.010

    Article  CAS  Google Scholar 

  • Zelles L (1995) Fatty acid patterns of microbial phospholipids and lipopolysaccharides. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer, Berlin, pp 80–92

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129 doi:10.1007/s003740050533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Helmholtz Centre for Environmental Research-UFZ (Halle, Germany) for financial support of the project, Manuela Unger (Tharandt, Germany) for laboratory analysis and two anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Hamer.

Additional information

Responsible Editor: Petra Marschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamer, U., Makeschin, F. Rhizosphere soil microbial community structure and microbial activity in set-aside and intensively managed arable land. Plant Soil 316, 57–69 (2009). https://doi.org/10.1007/s11104-008-9758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9758-2

Keywords

Navigation