Skip to main content
Log in

Genotypic differences in root hydraulic conductance of rice (Oryza sativa L.) in response to water regimes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To determine water uptake by rice in water-saving culture, we examined root hydraulic conductance (L 0), plant growth, and root anatomy of three rice genotypes (Oryza sativa L. ssp. indica cv. Beodien, traditional upland; ssp. japonica cv. Sensho, traditional upland; ssp. japonica cv. Koshihikari, improved lowland) under three water regimes: water-saturated (hydroponic), well-irrigated aerobic (control), and water-saving aerobic in soil. In hydroponic culture, although shoot dry weight (SDW) and root number were the largest in Sensho, root L 0 was the highest in Koshihikari. There was no significant relationship between root L 0 and SDW in hydroponics, so root L 0 might not limit shoot growth under flooding. Root L 0 was much less in soil than in hydroponics, and that of Koshihikari was the lowest, especially in water-saving conditions. Root L 0 was highly correlated with SDW under water-saving conditions but not in the control, so root L 0 limits shoot growth under repeated water stress. Root anatomy was less affected by water regime than root L 0 and is genetically controlled. Thus, root L 0 may be more affected by water channels than by root anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amodeo G, Dorr R, Vallejo A, Atuka M, Parisi M (1999) Radial and axial water transport in sugar beet storage root. J Exp Bot 50:509–516 doi:10.1093/jexbot/50.333.509

    Article  CAS  Google Scholar 

  • Azaizeh H, Steudle E (1991) Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol 97:1136–1145

    Article  PubMed  CAS  Google Scholar 

  • Bouman BAM (2001) Water-efficiency management strategies in rice production. Int Rice Res Notes 26:17–22

    Google Scholar 

  • Bouman BAM, Tuong TP (2001) Field water management to save water and increase its productivity in irrigated rice. Agr Water Manag 49:11–30 doi:10.1016/S0378-3774(00)00128-1

    Article  Google Scholar 

  • Bouman BAM, Peng S, Castaneda AR, Visperas RM (2005) Yield and water use of irrigated tropical aerobic rice systems. Agr Water Manage 74:87–105 doi:10.1016/j.agwat.2004.11.007

    Article  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381 doi:10.1007/BF00195729

    Article  CAS  Google Scholar 

  • Carvajal M, Martinez V, Alcaraz CF (1999) Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol Plantarum 105:95–101 doi:10.1034/j.1399-3054.1999.105115.x

    Article  CAS  Google Scholar 

  • Carvajal M, Cerda A, Martinez V (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? New Phytol 145:439–447 doi:10.1046/j.1469-8137.2000.00593.x

    Article  CAS  Google Scholar 

  • Henzler T, Steudle E (1995) Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane. J Exp Bot 46:199–209 doi:10.1093/jxb/46.2.199

    Article  CAS  Google Scholar 

  • Henzler T, Waterhouse RN, Smyth AJ, Carvajal M, Cooke DT, Schaffner AR et al (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210:50–60 doi:10.1007/s004250050653

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johanson I, Gustavsson S, Sjövall S, Fraysse L et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1368 doi:10.1104/pp.126.4.1358

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Aguilar A, Abe J, Morita S (2000) Anatomy of nodal roots in tropical upland and lowland rice varieties. Plant Prod Sci 3:437–445

    Article  Google Scholar 

  • Lian HR, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak SS et al (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489 doi:10.1093/pcp/pch058

    Article  PubMed  CAS  Google Scholar 

  • Lian HL, Yu X, Lane D, Sin WN, Tang ZC, Su WA (2006) Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Cell Res 16:651–660 doi:10.1038/sj.cr.7310068

    Article  PubMed  CAS  Google Scholar 

  • Matsuo N, Nhan, DQ, Mochizuki T (2007a) Effect of water-saving irrigation on rice yield and its water productivity. Jpn J Crop Sci 76: Extra issue 44–45 (in Japanese)

    Google Scholar 

  • Matsuo N, Nhan DQ, Mochizuki T (2007b) Effect of deep tillage on growth and yield of rice cultivars grown under water deficit. J Fac Agr Kyushu Univ 52:331–336

    Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membrane. Annu Rev Plant Physiol Plant Mol Biol 48:399–429 doi:10.1146/annurev.arplant.48.1.399

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto N, Steudle E, Hirasawa T, Lafitte R (2001) Hydraulic conductivity of rice roots. J Exp Bot 362:1835–1846 doi:10.1093/jexbot/52.362.1835

    Article  Google Scholar 

  • Mu Z, Zhang S, Zhang L, Liang A, Liang Z (2006) Hydraulic conductivity of whole root system is better than hydraulic conductivity of single root in correlation with the leaf water status of maize. Bot Stud (Taipei, Taiwan) 47:145–151

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24 doi:10.1111/j.1365-3040.1993.tb00840.x

    Article  CAS  Google Scholar 

  • Murai-Hatano M, Kuwagata T, Sakurai J, Nonami H, Ahamed A, Nagasuga K et al (2008) Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. Plant Cell Physiol (in press)

  • North GB, Nobel PS (2000) Heterogeneity in water availability alters cellular development and hydraulic conductivity along roots of a desert succulent. Ann Bot (Lond) 85:247–255 doi:10.1006/anbo.1999.1026

    Article  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: The Arabidopsis aquaporins. Genome Biol 3:1–17

    Google Scholar 

  • Radin JW (1990) Responses of transpiration and Hydraulic conductance to root temperature in nitrogen- and phosphorus-deficient cotton seedlings. Plant Physiol 92:855–857

    Article  PubMed  CAS  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217:193–205

    PubMed  CAS  Google Scholar 

  • Ranathunge K, Kotula L, Steudle E, Lafitte R (2004) Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 396:433–447 doi:10.1093/jxb/erh041

    Article  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005) Blockage of apoplastic bypass-flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell. Plant Cell Environ 28:121–133 doi:10.1111/j.1365-3040.2004.01245.x

    Article  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577 doi:10.1093/pcp/pci172

    Article  PubMed  CAS  Google Scholar 

  • Steudle E, Frensch J (1996) Water transport in plants: role of the apoplast. Plant Soil 187:67–79 doi:10.1007/BF00011658

    Article  CAS  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D et al (2003) Cytosolic pH regulates root water transport during anoxic stress. Nature 425:393–397 doi:10.1038/nature01853

    Article  PubMed  CAS  Google Scholar 

  • Trillo N, Fernández RJ (2005) Wheat plant hydraulic properties under prolonged experimental drought: Stronger decline in root-system conductance than in leaf area. Plant Soil 277:277–284 doi:10.1007/s11104-005-7493-5

    Article  CAS  Google Scholar 

  • Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ 26:1097–1116 doi:10.1046/j.1365-3040.2003.01035.x

    Article  Google Scholar 

  • Vandeleur R, Niemietz C, Tilbrook J, Tyerman SD (2005) Roles of aquaporins in root responses to irrigation. Plant Soil 274:141–161 doi:10.1007/s11104-004-8070-z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Matsuo.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, N., Ozawa, K. & Mochizuki, T. Genotypic differences in root hydraulic conductance of rice (Oryza sativa L.) in response to water regimes. Plant Soil 316, 25–34 (2009). https://doi.org/10.1007/s11104-008-9755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9755-5

Keywords

Navigation