Skip to main content
Log in

Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The production of phytohormones by plant-growth promoting rhizobacteria is considered to be an important mechanism by which these bacteria promote plant growth. In this study the importance of indole-3-acetic acid (IAA) produced by Azospirillum brasilense Sp245 in the observed plant growth stimulation was investigated by using Sp245 strains genetically modified in IAA production. Firstly wild-type A. brasilense Sp245 and an ipdC knock-out mutant which produces only 10% of wild-type IAA levels (Vande Broek et al., J Bacteriol 181:1338–1342, 1999) were compared in a greenhouse inoculation experiment for a number of plant parameters, thereby clearly demonstrating the IAA effect in plant growth promotion. Secondly, the question was addressed whether altering expression of the ipdC gene, encoding the key enzyme for IAA biosynthesis in A. brasilense, could also contribute to plant growth promotion. For that purpose, the endogenous promoter of the ipdC gene was replaced by either a constitutive or a plant-inducible promoter and both constructs were introduced into the wild-type strain. Based on a greenhouse inoculation experiment it was found that the introduction of these recombinant ipdC constructs could further improve the plant-growth promoting effect of A. brasilense. These data support the possibility of constructing Azospirillum strains with better performance in plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CFU:

colony-forming unit

GC-MS:

gas chromatography-mass spectrometry

IAA:

indole-3-acetic acid

Km:

kanamycin

PGPR:

plant-growth promoting rhizobacteria

Tc:

tetracycline

Trp:

tryptophan

References

  • Baldani VLD, Baldani JI, Döbereiner J (1987) Inoculation of field grown wheat (Triticum aestivum) with Azospirillum spp. in Brasil. Biol Fertil Soils 4:37–40

    Google Scholar 

  • Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 144:69–75

    Article  PubMed  CAS  Google Scholar 

  • Barbieri P, Zanelli T, Galli E, Zanetti G (1986) Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol Lett 36:87–90

    Article  CAS  Google Scholar 

  • Boddey RM (1987) Methods for quantification of nitrogen fixation associated with Gramineae. CRC Crit Rev Plant Sci 6:209–266

    Article  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce DW, Pharis RP (1989) Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    PubMed  CAS  Google Scholar 

  • Cacciari I, Lippi D, Pietrosanti T, Pietrosanti W (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant Soil 115:151–153

    Article  CAS  Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243:463–472

    PubMed  CAS  Google Scholar 

  • Crozier A, Arruda P, Jasmin JM, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirllum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54:2833–2837

    PubMed  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  • Elmerich C, Newton WE (2007) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, p 321

    Google Scholar 

  • Epstein E, Cohen JD (1981) Microscale preparation of pentofluorobenzyl esters: electron-capture gas chromatographic detection of indole-3-acetic acid in milligram amounts in plant tissue using a benchtop chromatograph-mass spectrometer. Planta 204:1–7

    Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    PubMed  CAS  Google Scholar 

  • Harari A, Kigel J, Okon Y (1988) Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant Soil 110:275–282

    Article  CAS  Google Scholar 

  • Horemans S, De Koninck K, Neuray J, Hermans R, Vlassak K (1986) Production of plant growth substances by Azospirillum sp. and other rhizosphere bacteria. Symbiosis 2:341–346

    CAS  Google Scholar 

  • Janzen RA, Rood SB, Dormaar JF, McGill WB (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically-defined medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum inoculated roots. Plant Soil 90:3–16

    Article  CAS  Google Scholar 

  • Piccoli P, Masciarelli O, Bottini R (1996) Metabolism of 17,17-[2H2]-gibberellins A4, A9 and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21:263–274

    CAS  Google Scholar 

  • Pilet PE, Chollet R (1970) Sur le dosage colorimétrique de l’acide indolylacétique. C R Acad Sci Ser D 271:1675–1678

    CAS  Google Scholar 

  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant-Microb Interact 6:609–615

    CAS  Google Scholar 

  • Prinsen E, Van Laer S, Öden S, Van Onckelen H (2000) Auxin analysis. In: Tucker GA, Roberts JA (eds) Plant hormone protocols. Humana, Totowa NJ, USA, pp 49–52

    Chapter  Google Scholar 

  • Russo A, Felici C, Toffanin A, Götz M, Collados C, Barea JM, Moënne-Loccoz Y, Smalla K, Vanderleyden J, Nuti M (2005) Effect of Azospirillum inoculants on arbuscular mycorrhiza establishment in wheat and maize plants. Biol Fertil Soils 41:301–309

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007a) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Versées W, Gocke D, Pohl M, Steyaert J, Vanderleyden J (2007b) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 189:7626–7633

    Article  PubMed  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum). Appl Environ Microbiol 37:1016–1024

    PubMed  CAS  Google Scholar 

  • Van Bastelaere E, Lambrecht M, Vermeiren H, Van Dommelen A, Keijers V, Proost P, Vanderleyden J (1999) Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars. Mol Microbiol 32:703–714

    Article  PubMed  Google Scholar 

  • Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense. J Bacteriol 181:1338–1342

    PubMed  CAS  Google Scholar 

  • Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant–Microb Interact 18:311–323

    Article  CAS  Google Scholar 

  • Vanstockem M, Michiels K, Vanderleyden J, Van Gool A (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physiological analysis of Tn5 and Tn5-mob insertional mutants. Appl Environ Microbiol 53:1387–1405

    Google Scholar 

  • Versées W, Spaepen S, Vanderleyden J, Steyaert J (2007a) The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 Å resolution—implications for its catalytic and regulatory mechanism. FEBS J 274:2363–2375

    Article  PubMed  CAS  Google Scholar 

  • Versées W, Spaepen S, Wood MD, Leeper FJ, Vanderleyden J, Steyaert J (2007b) Molecular mechanism of allosteric substrate activation in a thiamine diphosphate-dependent decarboxylase. J Biol Chem 282:35269–35278

    Article  PubMed  CAS  Google Scholar 

  • Xi C, Lambrecht M, Vanderleyden J, Michiels J (1999) Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial colonization studies. J Microbiol Methods 35:85–92

    Article  PubMed  CAS  Google Scholar 

  • Zimmer W, Bothe H (1988) The phytohormonal interactions between Azospirillum and wheat. Plant Soil 110:239–247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Belgian Ministry of Middle Class Sized Enterprises and Agriculture (Onderzoekingen gesubsidieerd door het Ministerie van Middenstand en Landbouw-Bestuur voor Onderzoek en Ontwikkeling) and the EU (contract BIO4-CT96-0027). S.S is financed by the Interuniversity Attraction Poles (IAP P6/27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos Vanderleyden.

Additional information

Responsible Editor: Petra Marschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaepen, S., Dobbelaere, S., Croonenborghs, A. et al. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312, 15–23 (2008). https://doi.org/10.1007/s11104-008-9560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9560-1

Keywords

Navigation