Skip to main content
Log in

Fungal endophytes: modifiers of plant disease

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes (“endo” = within, “phyte” = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adame-Álvarez RM, Mendiola-Soto J, Heil M (2014) Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation. FEMS Microbiol Lett 355:100–107. doi:10.1111/1574-6968.12454

    Article  PubMed  CAS  Google Scholar 

  • Andrews JH, Berbee FM, Nordheim EV (1983) Microbial antagonism to the imperfect stage of the apple scab pathogen, Venturia inaequalis. Phytopathology 73:228–234

    Article  Google Scholar 

  • Arnold A, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold A, Mejia L, Kyllo D, Rojas E, Maynard Z, Robbins N, Herre E (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey B, Bae H, Strem M, Crozier J, Thomas S, Samuels G, Vinyard B, Holmes K (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46:24–35. doi:10.1016/j.biocontrol.2008.01.003

    Article  Google Scholar 

  • Baynes M, Newcombe G, Dixon L, Castlebury L, O’Donnell K (2012) A novel plant-fungal mutualism associated with fire. Fungal Biol 116:133–144. doi:10.1016/j.funbio.2011.10.008

    Article  PubMed  Google Scholar 

  • Benítez M-S, Hersh MH, Vilgalys R, Clark JS (2013) Pathogen regulation of plant diversity via effective specialization. Trends Ecol Evol 28:705–711. doi:10.1016/j.tree.2013.09.005

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology and evolution. American Phytopathological Society, St Paul, pp 31–65

    Google Scholar 

  • Bonello P, Capretti P, Luchi N, Martini V, Michelozzi M (2008) Systemic effects of Heterobasidion annosum ss infection on severity of Diplodia pinea tip blight and terpenoid metabolism in Italian stone pine (Pinus pinea). Tree Physiol 28:1653–1660

    Article  PubMed  Google Scholar 

  • Bonito G, Reynolds H, Robeson MS II, Nelson J, Hodkinson BP, Tuskan G, Schadt CW, Vilgalys R (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol 23:3356–3370. doi:10.1111/mec.12821

    Article  PubMed  Google Scholar 

  • Borer E, Hosseini P, Seabloom E, Dobson A (2007) Pathogen-induced reversal of native dominance in a grassland community. Proc Natl Acad Sci 104:5473–5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges ÁV, Saraiva RM, Maffia LA (2015) Biocontrol of gray mold in tomato plants by Clonostachys rosea. Trop Plant Path 40:71–76

    Article  Google Scholar 

  • Brame C, Flood J (1983) Antagonism of Aureobasidium pullulans towards Alternaria solani. Trans Brit Mycol Soc 81:621–624

    Article  Google Scholar 

  • Breen JP (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423

    Article  Google Scholar 

  • Busby PE, Zimmerman N, Weston DJ, Jawdy SS, Houbraken J, Newcombe G (2013) Leaf endophytes and Populus genotype affect severity of damage from the necrotrophic leaf pathogen, Drepanopeziza populi. Ecosphere. doi:10.1890/ES13-00127.1

    Google Scholar 

  • Busby PE, Peay K, Newcombe G (2015) Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. doi:10.1111/nph.13742

    PubMed  Google Scholar 

  • Caesar AJ (2003) Synergistic interaction of soilborne plant pathogens and root-attacking insects in classical biological control of an exotic rangeland weed. Biol Control 28(1):144–153

    Article  Google Scholar 

  • Carisse O, Philion V, Rolland D, Bernier J (2000) Effect of fall application of fungal antagonists on spring ascospore production of the apple scab pathogen, Venturia inaequalis. Phytopathology 90:31–37

    Article  CAS  PubMed  Google Scholar 

  • Carroll GC (1992) Fungal mutualism. In: Carroll GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem. Dekker, New York, pp 327–354

    Google Scholar 

  • Christian N, Whitaker BK, Clay K (2015) Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 6:869. doi:10.3389/fmicb.2015.00869

    Article  PubMed  PubMed Central  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–279

    Article  Google Scholar 

  • Clay K (2014) Defensive symbiosis: a microbial perspective. Funct Ecol 28:293–298. doi:10.1111/1365-2435.12258

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society (APS Press), University of Michigan, Ann Arbor, p 539

    Google Scholar 

  • Cota LV, Maffia LA, Mizubuti ES, Macedo PE, Antunes RF (2008) Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biol Control 46:515–522

    Article  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751. doi:10.1126/science.1236011

    Article  CAS  PubMed  Google Scholar 

  • Danielsen S, Jensen DF (1999) Fungal endophytes from stalks of tropical maize and grasses: isolation, identification, and screening for antagonism against Fusarium verticillioides in maize stalks. Biocontrol Sci Technol 9:545–553

    Article  Google Scholar 

  • de Capdeville G, Wilson CL, Beer SV, Aist JR (2002) Alternative disease control agents induce resistance to blue mold in harvested ‘Red Delicious’ apple fruit. Phytopathology 92:900–908

    Article  PubMed  Google Scholar 

  • de Melo EA, Rosa de Lima RM, Laranjeira D, dos Santos LA, de Omena Gusmão L, de Souza EB (2015) Efficacy of yeast in the biocontrol of bacterial fruit blotch in melon plants. Trop Plant Pathol 40:56–64

    Article  Google Scholar 

  • Dingle J, Mcgee PA (2003) Some endophytic fungi reduce the density of pustules of Puccinia recondite f. sp. tritici in wheat. Mycol Res 107:310–316

    Article  PubMed  Google Scholar 

  • Elad Y, Chet I, Katan J (1980) Trichoderma harzianum: a biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 70:119–121

    Article  Google Scholar 

  • Ellis B (1972) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, State College

    Google Scholar 

  • Fox JE, Gulledge J, Engelhaupt E, Burrow ME, McLachlan JA (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. PNAS 104:10282–10287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  CAS  PubMed  Google Scholar 

  • Funk A, Centre PFR (1985) Foliar fungi of western trees. Pacific Forest Research Centre, Victoria

    Google Scholar 

  • Gallai N et al (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • Ganley R, Brunsfeld S, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci USA 101:10107–10112

  • Grosch R, Scherwinski K, Lottmann J, Berg G (2006) Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycol Res 110:1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Micro 2:43–56. doi:10.1038/nrmicro797

  • Hanada RE, de Jorge Souza T, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343

    Article  CAS  PubMed  Google Scholar 

  • Hanada RE, Pomella AWV, Costa HS, Bezerra JL, Loguercio LL, Pereira JO (2010) Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol 114:901–910

    Article  PubMed  Google Scholar 

  • Heather WA, Sharma IK (1987) Physiologic specialisation in the hyperparasitism of races of Melampsora larici-populina by isolates of Cladosporium tenuissimum. For Pathol 17:185–188

    Google Scholar 

  • Hoch HC, Staples RC, Whitehead B, Comeau J, Wolf ED (1987) Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235:1659–1662

    Article  CAS  PubMed  Google Scholar 

  • Houterman PM, Cornelissen BJC, Rep M (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog 4:e1000061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hue AG, Voldeng HD, Savard ME, Fedak G, Tian X, Hsiang T (2009) Biological control of Fusarium head blight of wheat with Clonostachys rosea strain ACM941. Can J Plant Pathol 31:169–179

    Article  Google Scholar 

  • Istifadah N, McGee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Austral Plant Pathol 35:411–418

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585. doi:10.1046/j.1469-8137.1997.00729.x

    Article  Google Scholar 

  • Jones EE, Bienkowski DA (2015) The importance of water potential range tolerance as a limiting factor on Trichoderma spp. biocontrol of Sclerotinia sclerotiorum. Ann Appl Biol. doi:10.1111/aab.12240

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Jones EE, Rabeendran N, Stewart A (2014) Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Sci Technol 24:1363–1382

    Article  Google Scholar 

  • Kandula DRW, Jones EE, Stewart A, McLean KL, Hampton JG (2015) Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Sci Technol. doi:10.1080/09583157.2015.1028892

    Google Scholar 

  • Kefialew Y, Ayalew A (2008) Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biol Technol 50:8–11

    Article  Google Scholar 

  • Khastini RO, Ohta H, Narisawa K (2012) The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage. J Microbiol 50:618–624

    Article  PubMed  Google Scholar 

  • Kiers ET, van der Heijden MGA (2006) Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87:1627–1636

    Article  PubMed  Google Scholar 

  • Kiers ET et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi:10.1038/417067a

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  PubMed  CAS  Google Scholar 

  • Kosaka H, Aikawa T, Ogura N, Tabata K, Kiyohara T (2001) Pine wilt disease caused by the pine wood nematode: the induced resistance of pine trees by the avirulent isolates of nematode. Eur J Plant Pathol 107(7):667–675

  • Kruske CR, Hesse CN, Challacombe JF, Cullen D, Herr JR, Mueller C, Tsang A, Vilgalys R (2015) Prospects and challenges for fungal metatranscriptomics of complex communities. Fungal Ecol 14:133–137

    Article  Google Scholar 

  • Kurose D, Furuya N, Tsuchiya K, Tsushima S, Evans HC (2012) Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control. Fungal Biol 116:785–791

  • Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis 82:1022–1028

    Article  Google Scholar 

  • Larran S, Simón MR, Moreno MV, Siurana MS, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864. doi:10.1126/science.aaa8764

    Article  CAS  PubMed  Google Scholar 

  • Ledford H (2015) Plant dwellers take the limelight. Nature 523:137–138

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Pan JJ, May G (2009) Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol Lett 299:31–37. doi:10.1111/j.1574-6968.2009.01719.x

    Article  CAS  PubMed  Google Scholar 

  • Maleszka R, Mason PH, Barron AB (2014) Epigenomics and the concept of degeneracy in biological systems. Brief Funct Genomics 13:191–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín JA, Macaya-Sanz D, Witzell J (2015) Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions. Eur J Plant Pathol 142:185–196. doi:10.1007/s10658-015-0602-2

    Article  CAS  Google Scholar 

  • Martinez-Medina A, Del Mar Alguacil M, Pascual JA, Van Wees SCM (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815. doi:10.1007/s10886-014-0478-1

    Article  CAS  PubMed  Google Scholar 

  • Masih EI, Paul B (2002) Secretion of β-1, 3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Curr Microb 44:391–395

    Article  CAS  Google Scholar 

  • Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, Stitt J, Shi Z, Zhang Y, Guiltinan MJ, Maximova SN (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479. doi:10.3389/fmicb.2014.00479

    PubMed  PubMed Central  Google Scholar 

  • Mekbib SB, Regnier TJ, Korsten L (2011) Efficacy and mode of action of yeast antagonists for control of Penicillium digitatum in oranges. Trop Plant Pathol 36:233–240

    Google Scholar 

  • Michereff SJ, da Silveira NSS, Reis A, de Mariano RLR (1995) Greenhouse screening of Trichoderma isolates for control of Curvularia leaf spot of yam. Mycopathologia 130:103–108

    Article  Google Scholar 

  • Moraga-Suazo P, Opazo A, Zaldúa S, González G, Sanfuentes E (2011) Evaluation of Trichoderma spp. and Clonostachys spp. strains to control Fusarium circinatum in Pinus radiata seedlings. Chil J Agric Res 71:412–417

    Article  Google Scholar 

  • Mousseaux MR, Dumroese RK, James RL, Wenny DL, Knudsen GR (1998) Efficacy of Trichoderma harzianum as a biological control of Fusarium oxysporum in container-grown Douglas-fir seedlings. New For 15:11–21

    Article  Google Scholar 

  • Narisawa K, Kawamata H, Currah RS, Hashiba T (2002) Suppression of Verticillium wilt in eggplant by some fungal root endophytes. Eur J Plant Pathol 108:103–109

    Article  Google Scholar 

  • Nischwitz C, Newcombe G, Anderson CL (2005) Host specialization of the mycoparasite Eudarluca caricis and its evolutionary relationship to Ampelomyces. Mycol Res 109:421–428. doi:10.1017/S0953756205002431

  • Newcombe G, Lee B, Robb J (1990) Early vascular sporulation: a possible role in the virulence of Verticillium albo-atrum in wilt of alfalfa. Physiol Mol Plant Pathol 36:441–449. doi:10.1016/0885-5765(90)90017-R

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

  • Nguyen NH, Smith D, Peay K, Kennedy P (2014) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205:1389–1393. doi:10.1111/nph.12923

    Article  PubMed  CAS  Google Scholar 

  • Pandey RR, Arora DK, Dubey RC (1993) Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia 124:31–39

    Article  Google Scholar 

  • Perazzolli M, Dagostin S, Ferrari A, Elad Y, Pertot I (2008) Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biol Control 47:228–234

    Article  CAS  Google Scholar 

  • Perello A, Simon MR, Arambarri AM (2002) Interactions between foliar pathogens and the saprophytic microflora of the wheat (Triticum aestivum L.) phylloplane. J Phytopathol 150:232–243

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, McKenzie E, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140

    Google Scholar 

  • Pimm SL, Joppa LN (2015) How many plant species are there, where are they, and at what rate are they going extinct? Ann Mo Bot Gard 100:170–176

    Article  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pruss Gail et al (1997) Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9(6):859–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AKH, Newcombe G (2013) The contribution of foliar endophytes to quantitative resistance to Melampsora rust. New Phytol 197:909–918. doi:10.1111/nph.12066

    Article  PubMed  Google Scholar 

  • Redman R, Freeman S, Clifton D, Morrel J, Brown G, Rodriguez R (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter DL (2008) Revival of saprotrophic and mycorrhizal basidiomycete cultures after 20 years in cold storage in sterile water. Can J Microbiol 54:595–599. doi:10.1139/w08-049

  • Ridout M, Newcombe G (2015) The frequency of modification of Dothistroma pine needle blight severity by fungi within the native range. For Ecol Manag 337:153–160. doi:10.1016/j.foreco.2014.11.010

    Article  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. doi:10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez MA, Rothen C, Lo TE, Cabrera GM, Godeas AM (2015) Suppressive soil against Sclerotinia sclerotiorumas a source of potential biocontrol agents: selection and evaluation of Clonostachys rosea BAFC1646. Biocontrol Sci Technol. doi:10.1080/09583157.2015.1052372

    Google Scholar 

  • Rodriguez-Estrada AE, Jonkers W, Kistler HC, May G (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Gen Biol 49:578–587

    Article  Google Scholar 

  • Romeralo CARMEN, Santamaría O, Pando V, Diez JJ (2015) Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biol Control 80:30–39

    Article  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Sasan RK, Bidochka MJ (2013) Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Can J Plant Pathol 35:288–293

    Article  CAS  Google Scholar 

  • Schulz B, Rommert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Selosse M et al (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21(11):621–628

    Article  PubMed  Google Scholar 

  • Sequeira L, Gaard G, De Zoeten GA (1977) Interaction of bacteria and host cell walls: its relation to mechanisms of induced resistance. Physiol Plant Pathol 10:43–50

    Article  Google Scholar 

  • Spadaro D, Gullino ML (2004) State of the art and future prospects of the biological control of postharvest fruit diseases. Int J Food Microbiol 91:185–194

    Article  PubMed  Google Scholar 

  • Stadler M, von Tiedemann A (2014) Biocontrol potential of Microsphaeropsis ochracea on microsclerotia of Verticillium longisporum in environments differing in microbial complexity. Biocontrol 59:449–460

    Article  Google Scholar 

  • Stevens RB (1960) Plant pathology: an advanced treatise. Academic Press, New York

    Google Scholar 

  • Stone J, Bacon C, White J (2000) An overview of endopytic microbes: endophytism defined. In: Bacon C, White J (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–29

    Google Scholar 

  • Tack AJM, Laine A, Burdon JJ, Bissett A, Thrall P (2015) Belowground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host-parasite interaction. New Phytol 207:1159–1169

    Article  PubMed  Google Scholar 

  • Usall J, Teixidó N, Fons E, Vinas I (2000) Biological control of blue mould on apple by a strain of Candida sake under several controlled atmosphere conditions. Int J Food Microbiol 58:83–92

    Article  CAS  PubMed  Google Scholar 

  • Van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci 97:8711–8716

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez de Aldana BR, Bills G, Zabalgogeazcoa I (2013) Are endophytes an important link between airborne spores and allergen exposure? Fungal Divers 60:33–42. doi:10.1007/s13225-013-0223-z

    Article  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wachowska U, Głowacka K (2014) Antagonistic interactions between Aureobasidium pullulans and Fusarium culmorum, a fungal pathogen of winter wheat. Biocontrol 59:635–645

    Article  Google Scholar 

  • Waqas M, Khan AL, Muhammad H, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287. doi:10.1080/17429145.2015.1079743

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Wennstrom A (1994) Endophyte: the misuse of an old term. Oikos 71:535–536

    Article  Google Scholar 

  • Wilson D (1993) Fungal endophytes: out of sight but should not be out of mind. Oikos 68:379–384

    Article  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yohalem DS (2004) Evaluation of fungal antagonists for grey mould management in early growth of pot roses. Ann Appl Biol 144:9–15

    Article  CAS  Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio 1:227–234

    PubMed  PubMed Central  Google Scholar 

  • Zimmerman NB, Vitousek PM (2012) Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci 109:13022–13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Sharon Doty and two anonymous reviewers for feedback on an earlier draft of this manuscript, and to Shannon Fraser and Brian Stanton for research and intellectual support. This research was supported by the National Science Foundation Science Engineering and Education for Sustainability Award 1314095 (PEB), the Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30407 from the USDA National Institute of Food and Agriculture (GN), and the DOE Feedstock Genomics Award 219086 (GN, PEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Posy E. Busby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busby, P.E., Ridout, M. & Newcombe, G. Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90, 645–655 (2016). https://doi.org/10.1007/s11103-015-0412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0412-0

Keywords

Navigation