Skip to main content
Log in

Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Ascorbic acid (AsA) biosynthesis and its implications for stress tolerance and plant development were investigated in a set of rice knock-out (KO) mutants for AsA biosynthetic genes and their wild-types. KO of two isoforms of GDP-d-mannose epimerase (OsGME) reduced the foliar AsA level by 20–30 %, and KO of GDP-l-galactose phosphorylase (OsGGP) by 80 %, while KO of myo-inositol oxygenase (OsMIOX) did not affect foliar AsA levels. AsA concentration was negatively correlated with lipid peroxidation in foliar tissue under ozone stress and zinc deficiency, but did not affect the sensitivity to iron toxicity. Lack of AsA reduced the photosynthetic efficiency as represented by the maximum carboxylation rate of Rubisco (Vmax), the maximum electron transport rate (Jmax) and the chlorophyll fluorescence parameter ΦPSII. Mutants showed lower biomass production than their wild-types, especially when OsGGP was lacking (around 80 % reductions). All plants except for KO mutants of OsGGP showed distinct peaks in foliar AsA concentrations during the growth, which were consistent with up-regulation of OsGGP, suggesting that OsGGP plays a pivotal role in regulating foliar AsA levels during different growth stages. In conclusion, our data demonstrate multiple roles of AsA in stress tolerance and development of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  CAS  PubMed  Google Scholar 

  • Alhagdow M et al (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni O, De Gara L, Tommasi F, Liso R (1992) Changes in the ascorbate system during seed development of Vicia faba L. Plant Physiol 99:235–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Badejo AA, Tanaka N, Esaka M (2008) Analysis of GDP-d-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol 49:126–132

    Article  CAS  PubMed  Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, Di Cagno R, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal l-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant, Cell Environ 28:1073–1081

    Article  CAS  Google Scholar 

  • Becana M, Moran J, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2000) Tansley review no. 111—possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Chai L, Wang J, Fan Z, Liu Z, Wen G, Li X, Yang Y (2014) Regulation of the flowering time of Arabidopsis thaliana by thylakoid ascorbate peroxidase. Afr J Biotechnol 11:7151–7157

    Google Scholar 

  • Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vanková R, Amir R, Miller G (2014) Ascorbate peroxidase6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166:370–383

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen CP, Frei M, Wissuwa M (2011) The OzT8 locus in rice protects leaf carbon assimilation rate and photosynthetic capacity under ozone stress. Plant, Cell Environ 34:1141–1149

    Article  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. P Natl Acad Sci USA 100:3525–3530

    Article  CAS  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant, Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Córdoba F, González-Reyes JA (1994) Ascorbate and plant cell growth. J Bioenerg Biomembr 26:399–405

    Article  PubMed  Google Scholar 

  • Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2008) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 53:595

    Article  CAS  Google Scholar 

  • Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farooq M, Basra S, Ahmad N (2007) Improving the performance of transplanted rice by seed priming. Plant Growth Regul 51:129–137

    Article  CAS  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Frei M, Tanaka JP, Chen CP, Wissuwa M (2010a) Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. J Exp Bot 61:1405–1417

    Article  CAS  PubMed  Google Scholar 

  • Frei M, Wang Y, Ismail AM, Wissuwa M (2010b) Biochemical factors conferring shoot tolerance to oxidative stress in rice grown in low zinc soil. Funct Plant Biol 37:74–84

    Article  CAS  Google Scholar 

  • Frei M, Wissuwa M, Pariasca-Tanaka J, Chen CP, Suedekum KH, Kohno Y (2012) Leaf ascorbic acid level—is it really important for ozone tolerance in rice? Plant Physiol Biochem 59:63–70

    Article  CAS  PubMed  Google Scholar 

  • Gara L, Pinto Md, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plantarum 100:894–900

    Article  Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    Article  CAS  PubMed  Google Scholar 

  • Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-d-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    Article  CAS  PubMed  Google Scholar 

  • Giovanelli G, Lavelli V, Peri C, Nobili S (1999) Variation in antioxidant components of tomato during vine and post-harvest ripening. J Sci Food Agric 79:1583–1588

    Article  CAS  Google Scholar 

  • Gracy RW, Noltmann EA (1968) Studies on phosphomannose isomerase 3. A mechanism for catalysis and for role of zinc in enzymatic and nonenzymatic isomerization. J Biol Chem 243:5410–5419

    CAS  PubMed  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate. Nature 433:83–87

    Article  CAS  PubMed  Google Scholar 

  • Helsper JP, Loewus FA (1982) Metabolism of l-threonic acid in Rumex × acutus L. and Pelargonium crispum (L.) L’Hér. Plant Physiol 69:1365–1368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Höller S, Hajirezaei M-R, Wirén N, Frei M (2014a) Ascorbate metabolism in rice genotypes differing in zinc efficiency. Planta 239:367–379

    Article  PubMed  Google Scholar 

  • Höller S, Meyer A, Frei M (2014b) Zinc deficiency differentially affects redox homeostasis of rice genotypes contrasting in ascorbate level. J Plant Physiol 171:1748–1756

    Article  PubMed  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92

    CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plantarum 126:343–355

    Article  CAS  Google Scholar 

  • Jeong DH et al (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132

    Article  CAS  PubMed  Google Scholar 

  • Jo Y, Hyun TK (2011) Genome-wide identification of antioxidant component biosynthetic enzymes: comprehensive analysis of ascorbic acid and tocochromanols biosynthetic genes in rice. Comput Biol Chem 35:261–268

    Article  CAS  PubMed  Google Scholar 

  • Kangasjarvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant, Cell Environ 28:1021–1036

    Article  CAS  Google Scholar 

  • Kim YS, Kim IS, Bae MJ, Choe YH, Kim YH, Park HM, Kang HG, Yoon HS (2013) Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica). Planta 237:1613–1625

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV (2010) Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol 167:805–811

    Article  CAS  PubMed  Google Scholar 

  • Laing WA, Martínez-Sánchez M, Wright MA, Bulley SM, Brewster D, Dare AP, Rassam M, Wang D, Storey R, Macknight RC (2015) An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in arabidopsis. Plant Cell Online:tpc 114:133777. doi:10.1105/tpc.114.133777

    Google Scholar 

  • Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci 104:9534–9539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YP, Baek K-H, Lee H-S, Kwak S-S, Bang J-W, Kwon S-Y (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linster CL, Clarke SG (2008) L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lisko KA, Hubstenberger JF, Phillips GC, Belefant-Miller H, McClung A, Lorence A (2013) Ontogenetic changes in vitamin C in selected rice varieties. Plant Physiol Biochem 66:41–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu KL, Shen L, Wang JQ, Sheng JP (2008) Rapid inactivation of chloroplastic ascorbate peroxidase is responsible for oxidative modification to Rubisco in tomato (Lycopersicon esculentum) under cadmium stress. J Integr Plant Biol 50:415–426

    Article  CAS  PubMed  Google Scholar 

  • Lokhande SD, Ki Ogawa, Tanaka A, Hara T (2003) Effect of temperature on ascorbate peroxidase activity and flowering of Arabidopsis thaliana ecotypes under different light conditions. J Plant Physiol 160:57–64

    Article  CAS  PubMed  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Major LL, Wolucka BA, Naismith JH (2005) Structure and function of GDP-mannose-3′, 5′-epimerase: an enzyme which performs three chemical reactions at the same active site. J Am Chem Soc 127:18309–18320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mano J, Hideg É, Asada K (2004) Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Arch Biochem Biophys 429:71–80

    Article  CAS  PubMed  Google Scholar 

  • Massot C, Bancel D, Lauri FL, Truffault V, Baldet P, Stevens R, Gautier H (2013) High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes. PLoS ONE 8:e84474. doi:10.1371/journal.pone.0084474

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller-Moulé P (2008) An expression analysis of the ascorbate biosynthesis enzyme VTC2. Plant Mol Biol 68:31–41

    Article  PubMed  Google Scholar 

  • Müller-Moulé P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128:970–977

    Article  PubMed Central  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Phys 49:249–279

    Article  CAS  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Bioch 40:537–548

    Article  CAS  Google Scholar 

  • Saito K, Kasai Z (1984) Synthesis of l-(+)-tartaric acid from l-ascorbic acid via 5-Keto-d-gluconic acid in grapes. Plant Physiol 76:170–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saito K, Ohmoto J, Kuriha N (1997) Incorporation of O-18 into oxalic, l-threonic and l-tartaric acids during cleavage of l-ascorbic and 5-keto-d-gluconic acids in plants. Phytochemistry 44:805–809

    Article  CAS  Google Scholar 

  • Schneider R (2005) Pharmaka im Urin: Abbau und Versickerung vs. Pflanzenaufnahme. In: Bastian A, Bornemann C, Hachenberg M, Oldenburg M, Schmelzer M (eds) Nährstofftrennung und -verwertung in der Abwassertechnik am Beispiel der “Lambertsmühle”. Bonn, Germany, pp 54–81

    Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell Environ 30:1035–1040

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc 355:1455–1464

    Article  CAS  Google Scholar 

  • Smirnoff N, Pallanca JE (1996) Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans 24:472–478

    CAS  PubMed  Google Scholar 

  • Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda Y, Wu L, Frei M (2013) A critical comparison of two high-throughput ascorbate analyses methods for plant samples. Plant Physiol Biochem 70:418–423

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M (2014) Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. J Exp Bot 66:293–306

  • Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe K, Suzuki K, Kitamura S (2006) Characterization of a GDP-d-mannose 3′,5′-epimerase from rice. Phytochemistry 67:338–346

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Loewus FA (1978) Biosynthesis of (+)-tartaric acid from L-[4-14C] ascorbic acid in grape and geranium. Plant Physiol 61:672–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolucka BA, Van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  CAS  PubMed  Google Scholar 

  • Wu LB, Shhadi MY, Gregorio G, Matthus E, Becker M, Frei M (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7:1–12

    Article  Google Scholar 

  • Yoshida S, Forno DA, Cock JH (1971) Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Banos, Philippines

    Google Scholar 

  • Yu L et al (2010) Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot 61:1625–1634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL (2009) AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/l-galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou YH, Yu JQ, Mao WH, Huang LF, Song XS, Nogués S (2006) Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant Cell Physiol 47:192–199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Frei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höller, S., Ueda, Y., Wu, L. et al. Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.). Plant Mol Biol 88, 545–560 (2015). https://doi.org/10.1007/s11103-015-0341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0341-y

Keywords

Navigation