Skip to main content

Advertisement

Log in

Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Many plant-based systems have been developed as bioreactors to produce recombinant proteins. The choice of system for large-scale production depends on its intrinsic expression efficiency and its propensity for scale-up, post-harvest storage and downstream processing. Factors that must be considered include the anticipated production scale, the value and intended use of the product, the geographical production area, the proximity of processing facilities, intellectual property, safety and economics. It is also necessary to consider whether different species and organs affect the subcellular trafficking, structure and qualitative properties of recombinant proteins. In this article we discuss the subcellular localization and N-glycosylation of two commercially-relevant recombinant glycoproteins (Aspergillus niger phytase and anti-HIV antibody 2G12) produced in different plant species and organs. We augment existing data with novel results based on the expression of the same recombinant proteins in Arabidopsis and tobacco seeds, focusing on similarities and subtle differences in N-glycosylation that often reflect the subcellular trafficking route and final destination, as well as differences generated by unique enzyme activities in different species and tissues. We discuss the potential consequences of such modifications on the stability and activity of the recombinant glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abranches R, Marcel S, Arcalis E, Altmann F, Fevereiro P, Stoger E (2005) Plants as bioreactors: a comparative study suggests that Medicago truncatula is a promising production system. J Biotechnol 120(1):121–134. doi:10.1016/j.jbiotec.2005.04.026

    Article  PubMed  CAS  Google Scholar 

  • Abranches R, Arcalis E, Marcel S, Altmann F, Ribeiro-Pedro M, Rodriguez J, Stoger E (2008) Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta 227(3):649–658. doi:10.1007/s00425-007-0647-3

    Article  PubMed  CAS  Google Scholar 

  • Arcalis E, Marcel S, Altmann F, Kolarich D, Drakakaki G, Fischer R, Christou P, Stoger E (2004) Unexpected deposition patterns of recombinant proteins in post-endoplasmic reticulum compartments of wheat endosperm. Plant Physiol 136(3):3457–3466. doi:10.1104/pp.104.050153

    Article  PubMed  CAS  Google Scholar 

  • Arcalis E, Stadlmann J, Marcel S, Drakakaki G, Winter V, Rodriguez J, Fischer R, Altmann F, Stoger E (2010) The changing fate of a secretory glycoprotein in developing maize endosperm. Plant Physiol 153(2):693–702. doi:10.1104/pp.109.152363

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Stoger E, Arcalis E, Pontopidan K, Holm PB (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis. J Agric Food Chem 54(13):4624–4632. doi:10.1021/jf0600152

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (2007) The developmental biology of cereal endosperm. Plant Cell Monogr 8:1–20

    Article  Google Scholar 

  • Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, Altmann F, Steinkellner H (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285(21):15923–15930. doi:10.1074/jbc.M109.088401

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Bradford KJ (2000) Expression of an expansion is associated with endosperm weakening during tomato seed germination. Plant Physiol 124(3):1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Denecke J, Botterman J, Deblaere R (1990) Protein secretion in plant cells can occur via a default pathway. Plant cell 2(1):51–59. doi:10.1105/tpc.2.1.51

    PubMed  CAS  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59(6):869–880. doi:10.1007/s11103-005-1537-3

    Article  PubMed  CAS  Google Scholar 

  • Drakakaki G, Marcel S, Arcalis E, Altmann F, Gonzalez-Melendi P, Fischer R, Christou P, Stoger E (2006) The intracellular fate of a recombinant protein is tissue dependent. Plant Physiol 141(2):578–586. doi:10.1104/pp.106.076661

    Article  PubMed  CAS  Google Scholar 

  • Elbers IJ, Stoopen GM, Bakker H, Stevens LH, Bardor M, Molthoff JW, Jordi WJ, Bosch D, Lommen A (2001) Influence of growth conditions and developmental stage on N-glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves. Plant Physiol 126(3):1314–1322

    Article  PubMed  CAS  Google Scholar 

  • FDA (2012) NDA approval letter for new drug application number 022458, Reference ID: 3124792

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9(4–5):279–299

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Schillberg S, Hellwig S, Twyman RM, Drossard J (2012) GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv 30(2):434–439. doi:10.1016/j.biotechadv.2011.08.007

    Article  PubMed  CAS  Google Scholar 

  • Fischl RM, Stadlmann J, Grass J, Altmann F, Leonard R (2011) The two endo-beta-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels. Plant Mol Biol 77(3):275–284. doi:10.1007/s11103-011-9808-7

    Article  PubMed  CAS  Google Scholar 

  • Fitchette AC, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B, Gomord V, Crooks K, Lerouge P, Faye L, Hawes C (1999) Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol 121(2):333–344

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Sack M, Arcalis E, Stadlmann J, Quendler H, Rademacher T, Stoger E, Scheller J, Fischer R, Conrad U (2009) Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Plant Biotechnol J 7(9):899–913. doi:10.1111/j.1467-7652.2009.00452.x

    Article  PubMed  CAS  Google Scholar 

  • Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC (2011) High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21(7):949–959. doi:10.1093/glycob/cwr027

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587. doi:10.1111/j.1467-7652.2009.00497.x

    Article  PubMed  CAS  Google Scholar 

  • Haddley K (2012) Taliglucerase alfa for the treatment of Gaucher’s disease. Drugs Today 48(8):525–532. doi:10.1358/dot.2012.48.8.1844808

    PubMed  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342(6245):76–78. doi:10.1038/342076a0

    Article  PubMed  CAS  Google Scholar 

  • Hoja U, Sonnewald U (2012) Molecular farming in plants In: eLS. Wiley: Chichester. doi:10.1002/9780470015902.a0003365.pub2

  • Hollak CE (2012) An evidence-based review of the potential benefits of taliglucerase alfa in the treatment of patients with Gaucher disease. Core Evid 7:15–20. doi:10.2147/CE.S20201

    Article  PubMed  CAS  Google Scholar 

  • Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107(2):278–289. doi:10.1002/bit.22800

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8(3):226–234. doi:10.1038/nrd2804

    Article  PubMed  CAS  Google Scholar 

  • Katayama H, Nagasu T, Oda Y (2001) Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15(16):1416–1421. doi:10.1002/rcm.379

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100(13):8013–8018. doi:10.1073/pnas.0832472100

    Article  PubMed  CAS  Google Scholar 

  • Kolarich D, Altmann F (2000) N-Glycan analysis by matrix-assisted laser desorption/ionization mass spectrometry of electrophoretically separated nonmammalian proteins: application to peanut allergen Ara h 1 and olive pollen allergen Ole e 1. Anal Biochem 285(1):64–75. doi:10.1006/abio.2000.4737

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38(1–2):31–48

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger G, Frundt C, Vogeli-Lange R, Meins F Jr (1995) Class I [beta]-1,3-glucanases in the endosperm of tobacco during germination. Plant Physiol 109(3):751–759

    PubMed  CAS  Google Scholar 

  • Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119(5):1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Kunert R, Cao J, Robinson DG, Depicker A, Steinkellner H (2011a) Production of monoclonal antibodies with a controlled N-glycosylation pattern in seeds of Arabidopsis thaliana. Plant Biotechnol J 9(2):179–192. doi:10.1111/j.1467-7652.2010.00540.x

    Article  PubMed  CAS  Google Scholar 

  • Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Pabst M, Castilho A, Kunert R, Liang M, Arcalis E, Robinson DG, Depicker A, Steinkellner H (2011b) Expression of antibody fragments with a controlled N-glycosylation pattern and induction of endoplasmic reticulum-derived vesicles in seeds of Arabidopsis. Plant Physiol 155(4):2036–2048. doi:10.1104/pp.110.171330

    Article  PubMed  CAS  Google Scholar 

  • Lössl AG, Waheed MT (2011) Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol J 9(5):527–539. doi:10.1111/j.1467-7652.2011.00615.x

    Article  PubMed  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4(10):794–805. doi:10.1038/nrg1177

    Article  PubMed  CAS  Google Scholar 

  • Morandini F, Avesani L, Bortesi L, Van Droogenbroeck B, De Wilde K, Arcalis E, Bazzoni F, Santi L, Brozzetti A, Falorni A, Stoger E, Depicker A, Pezzotti M (2011) Non-food/feed seeds as biofactories for the high-yield production of recombinant pharmaceuticals. Plant Biotechnol J 9(8):911–921. doi:10.1111/j.1467-7652.2011.00605.x

    Article  PubMed  CAS  Google Scholar 

  • Muntz K (1998) Deposition of storage proteins. Plant Mol Biol 38(1–2):77–99

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki H, Morohashi Y (1996) An endo-beta-mannanase develops exclusively in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 110(2):555–559

    PubMed  CAS  Google Scholar 

  • Okamoto T, Shimada T, Hara-Nishimura I, Nishimura M, Minamikawa T (2003) C-terminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-endopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase. Plant Physiol 132(4):1892–1900

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Teh AY-H, Twyman RM, Ma JK-C. (2013) Target product selection—where can Molecular Pharming make the difference? Curr Pharm Des [Epub ahead of print]

  • Peters J, Stoger E (2011) Transgenic crops for the production of recombinant vaccines and anti-microbial antibodies. Hum vaccin 7(3):367–374

    Article  PubMed  CAS  Google Scholar 

  • Petruccelli S, Otegui MS, Lareu F, Tran Dinh O, Fitchette AC, Circosta A, Rumbo M, Bardor M, Carcamo R, Gomord V, Beachy RN (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J 4(5):511–527. doi:10.1111/j.1467-7652.2006.00200.x

    PubMed  CAS  Google Scholar 

  • Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6(2):189–201. doi:10.1111/j.1467-7652.2007.00306.x

    Article  PubMed  CAS  Google Scholar 

  • Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, Labrou N, Altmann F, Ma J, Stoger E, Capell T, Christou P (2008) Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci U S A 105(10):3727–3732. doi:10.1073/pnas.0708841104

    Article  PubMed  CAS  Google Scholar 

  • Ramirez N, Rodriguez M, Ayala M, Cremata J, Perez M, Martinez A, Linares M, Hevia Y, Paez R, Valdes R, Gavilondo JV, Selman-Housein G (2003) Expression and characterization of an anti-hepatitis B surface antigenglycosylated mouse antibody in transgenic tobacco (Nicotiana tabacum) plants and its use in the immunopurification of its target antigen. Biotechnol Appl Biochem 38:223–230. doi:10.1042/Ba20030028

    Article  PubMed  CAS  Google Scholar 

  • Schahs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5(5):657–663. doi:10.1111/j.1467-7652.2007.00273.x

    Article  PubMed  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5(5):579–590. doi:10.1111/j.1467-7652.2007.00263.x

    Article  PubMed  CAS  Google Scholar 

  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740. doi:10.1074/jbc.M202069200

    Article  PubMed  CAS  Google Scholar 

  • Sitrit Y, Hadfield KA, Bennett AB, Bradford KJ, Downie AB (1999) Expression of a polygalacturonase associated with tomato seed germination. Plant Physiol 121(2):419–428. doi:10.1104/Pp.121.2.419

    Article  PubMed  CAS  Google Scholar 

  • Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, Finnern R, Lerouge P (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-alpha(1,3)-fucose residues. Plant Biotechnol J 2(4):279–287. doi:10.1111/j.1467-7652.2004.00078.x

    Article  PubMed  CAS  Google Scholar 

  • Strasser R, Altmann F, Mach L, Glossl J, Steinkellner H (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett 561(1–3):132–136. doi:10.1016/S0014-5793(04)00150-4

    Article  PubMed  CAS  Google Scholar 

  • Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H, Mach L, Glossl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6(4):392–402. doi:10.1111/j.1467-7652.2008.00330.x

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Hiroi T, Hirose S, Yang L, Takaiwa F (2010) Rice seed ER-derived protein body as an efficient delivery vehicle for oral tolerogenic peptides. Peptides 31(8):1421–1425. doi:10.1016/j.peptides.2010.04.032

    Article  PubMed  CAS  Google Scholar 

  • Toyooka K, Okamoto T, Minamikawa T (2000) Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol 148(3):453–464

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21(12):570–578. doi:10.1016/j.tibtech.2003.10.002

    Article  PubMed  CAS  Google Scholar 

  • Verwoerd TC, van Paridon PA, van Ooyen AJ, van Lent JW, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109(4):1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL (1998) Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol 160(7):3393–3402

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Stoger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arcalis, E., Stadlmann, J., Rademacher, T. et al. Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Mol Biol 83, 105–117 (2013). https://doi.org/10.1007/s11103-013-0049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0049-9

Keywords

Navigation