Skip to main content
Log in

Characterization of a legumain/vacuolar processing enzyme and YVADase activity in Papaver pollen

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Legumains, also known as Vacuolar Processing Enzymes (VPEs) have received considerable attention recently, as they share structural properties with mammalian caspase-1 and exhibit YVADase/caspase-1-like cleavage activity. Although many legumains have been cloned, knowledge about their detailed characteristics and intracellular localization is relatively limited. We previously identified several caspase-like activities activated by self-incompatibility (SI) in pollen; a DEVDase was required for programmed cell death (PCD), but YVADase was not (Bosch and Franklin-Tong in Proc Natl Acad Sci USA 104:18327–18332, 2007; Thomas and Franklin-Tong in Nature 429:305–309, 2004). Here we report identification of a legumain/VPE from Papaver rhoeas pollen (PrVPE1) that binds to the DEVD tetrapeptide, a signature substrate for caspase-3. A detailed characterization of the recombinant PrVPE1 cleavage activity revealed that, like other VPEs, it has YVADase activity and requires an acidic pH for activity. Unlike other legumain/VPEs, it also exhibits DEVDase and IETDase activities and apparently does not require processing for activity. The pollen-expressed PrVPE1 localizes to a reticulate compartment resembling the vacuole. Examination of YVADase activity using live-cell imaging of pollen tubes revealed YVADase activity in mitochondria of growing pollen tubes. The unexpected features of PrVPE1, together with evidence for YVADase activity in plant mitochondria, indicate that VPEs, YVADases, their localization and functions in plant cells merit further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Becker C, Shutov AD, Nong VH, Senyuk VI, Jung R, Horstmann C, Fischer J, Nielsen NC, Müntz K (1995) Purification, cDNA cloning and characterization of proteinase B, an asparagine-specific endopeptidase from germinating vetch (Vicia sativa L.) seeds. Eur J Biochem 228:456–462

    Article  CAS  PubMed  Google Scholar 

  • Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    Article  CAS  PubMed  Google Scholar 

  • Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Franklin-Tong VE (2007) Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen. Proc Natl Acad Sci USA 104:18327–18332

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Poulter NS, Vatovec S, Franklin-Tong VE (2008) Initiation of programmed cell death in self-incompatibility: role for cytoskeleton modifications and several caspase-like activities. Mol Plant 1:879–887

    Article  CAS  PubMed  Google Scholar 

  • Chen J-M, Rawlings ND, Stevens RAE, Barrett A (1998a) Cloning and expression of mouse legumain, a lysosomal endopeptidase. Biochem J 335:111–117

    CAS  PubMed  Google Scholar 

  • Chen J-M, Rawlings ND, Stevens RAE, Barrett AJ (1998b) Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett 441:361–365

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu H-M (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Ann Rev Plant Biol 59:547–572

    Article  CAS  Google Scholar 

  • Foote HCC, Ride JP, Franklin-Tong VE, Walker EA, Lawrence MJ, Franklin FCH (1994) Cloning and expression of a distinctive class of self- incompatibility (S) gene from Papaver rhoeas L. Proc Natl Acad Sci USA 91:2265–2269

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Takeuchi Y, Nishimura M (1993) Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell 5:1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825–836

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404–408

    Article  CAS  PubMed  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  CAS  PubMed  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911

    Article  CAS  PubMed  Google Scholar 

  • Hicks GR, Rojo E, Hong S, Carter DC, Raikhel NV (2004) Germinating pollen has tubular vacuoles, displays highly dynamic vacuole biogenesis, and requires VACUOLESS1 for proper function. Plant Physiol 134:1227–1230

    Article  CAS  PubMed  Google Scholar 

  • Hiraiwa N, Takeuchi Y, Nishimura M, Hara-Nishimura I (1993) A vacuolar processing enzyme in maturing and germinating Seeds: its distribution and associated changes during development. Plant Cell Physiol 34:1197–1204

    CAS  Google Scholar 

  • Ishii S (1994) Legumain: asparaginyl endopeptidase. Meth Enzymol 244:604–615

    Article  CAS  PubMed  Google Scholar 

  • Jackson MA, Rae AL, Casu RE, Grof CPL, Bonnett GD, Maclean DJ (2007) A bioinformatic approach to the identification of a conserved domain in a sugarcane legumain that directs GFP to the lytic vacuole. Funct Plant Biol 34:633–644

    Article  CAS  Google Scholar 

  • Kahlenberg JM, Dubyak GR (2004) Differing caspase-1 activation states in monocyte versus macrophage models of IL-1{beta} processing and release. J Leukoc Biol 76:676–684

    Article  CAS  PubMed  Google Scholar 

  • Kenji Y, Tomoo S, Mikio N, Ikuko H-N (2005) A VPE family supporting various vacuolar functions in plants. Physiol Plant 123:369–375

    Article  Google Scholar 

  • Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J 19:43–53

    Article  CAS  PubMed  Google Scholar 

  • Kuranaga E, Miura M (2007) Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 17:135–144

    Article  CAS  PubMed  Google Scholar 

  • Kuroyanagi M, Nishimura M, Hara-Nishimura I (2002) Activation of Arabidopsis vacuolar processing enzyme by self-catalytic removal of an auto-inhibitory domain of the C-terminal propeptide. Plant Cell Physiol 43:143–151

    Article  CAS  PubMed  Google Scholar 

  • Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914–32920

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yin HL, Yuan J (2008) Flightless-I regulates proinflammatory caspases by selectively modulating intracellular localization and caspase activity. J Cell Biol 181:321–333

    Article  CAS  PubMed  Google Scholar 

  • Linnestad C, Doan DNP, Brown RC, Lemmon BE, Meyer DJ, Jung R, Olsen O-A (1998) Nucellain, a barley homolog of the dicot vacuolar-processing protease, is localized in nucellar cell walls. Plant Physiol 118:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi N, Hayashi Y, Koumoto Y, Shimada T, Fukasawa-Akada T, Nishimura M, Hara-Nishimura I (2001) A novel membrane protein that is transported to protein storage vacuoles via precursor-accumulating vesicles. Plant Cell 13:2361–2372

    Article  CAS  PubMed  Google Scholar 

  • Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Minamikawa T (1999) Molecular cloning and characterization of Vigna mungo processing enzyme 1 (VmPE-1), an asparaginyl endopeptidase possibly involved in posttranslational processing of a vacuolar cysteine endopeptidase (SH-EP). Plant Mol Biol 39:63–73

    Article  CAS  PubMed  Google Scholar 

  • Rojo E, Zouhar J, Carter C, Kovaleva V, Raikhel NV (2003) A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proc Natl Acad Sci 100:7389–7394

    Article  CAS  PubMed  Google Scholar 

  • Rojo E, Martin R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sanchez-Serrano JJ, Baker B (2004) VPEγ exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14:1897–1906

    Article  CAS  PubMed  Google Scholar 

  • Rosin FM, Watanabe N, Lam E (2005) Moonlighting vacuolar protease: multiple jobs for a busy protein. Trends Plant Sci 10:516–518

    Article  CAS  PubMed  Google Scholar 

  • Sanmartin M, Jaroszewski L, Raikhel NV, Rojo E (2005) Caspases. Regulating death since the origin of life. Plant Physiol 137:841–847

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Yamada K, Kataoka M, Nakaune S, Koumoto Y, Kuroyanagi M, Tabata S, Kato T, Shinozaki K, Seki M, Kobayashi M, Kondo M, Nishimura M, Hara-Nishimura I (2003) Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J Biol Chem 278:32292–32299

    Article  CAS  PubMed  Google Scholar 

  • Snowman BN, Kovar DR, Shevchenko G, Franklin-Tong VE, Staiger CJ (2002) Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14:2613–2626

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  CAS  PubMed  Google Scholar 

  • Toyooka K, Okamoto T, Minamikawa T (2001) Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components. J Cell Biol 154:973–982

    Article  CAS  PubMed  Google Scholar 

  • van Loo G, Saelens X, Matthijssens F, Schotte P, Beyaert R, Declercq W, Vandenabeele P (2002) Caspases are not localized in mitochondria during life or death. Cell Death Differ 9:1207–1211

    Article  PubMed  Google Scholar 

  • Wheeler MJ, Franklin-Tong VE, Franklin FCH (2001) The molecular and genetic basis of pollen-pistil interactions. New Phytol 151:565–584

    Article  CAS  Google Scholar 

  • Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, Franklin FCH, Franklin-Tong VE (2009) Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992–995

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I (1999) Multiple functional proteins are produced by cleaving Asn-Gln bonds of a single precursor by Vacuolar Processing Enzyme. J Biol Chem 274:2563–2570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the horticultural staff for growing the plants and helping harvest material. This work was funded by the Biotechnology and Biological Sciences Research Council (B.B.S.R.C.). K.A.W. was funded by a BBSRC studentship. We thank Ikuko Hara-Nishimura for sharing reagents and unpublished data with us. We thank Takashi Okamoto for the sample of the VmPE-1 antibody. The Papaver pollen PrVPE1 cDNA sequence has been deposited in the EMBL sequence database with the accession number FN870624.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernonica E. Franklin-Tong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Supplementary material 2 (PPT 720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosch, M., Poulter, N.S., Perry, R.M. et al. Characterization of a legumain/vacuolar processing enzyme and YVADase activity in Papaver pollen. Plant Mol Biol 74, 381–393 (2010). https://doi.org/10.1007/s11103-010-9681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9681-9

Keywords

Navigation