Skip to main content
Log in

Axillary bud outgrowth in herbaceous shoots: how do strigolactones fit into the picture?

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Strigolactones have recently been identified as the long sought-after signal required to inhibit shoot branching (Gomez-Roldan et al. 2008; Umehara et al. 2008; reviewed in Dun et al. 2009). Here we briefly describe the evidence for strigolactone inhibition of shoot branching and, more extensively, the broader context of this action. We address the central question of why strigolactone mutants exhibit a varied branching phenotype across a wide range of experimental conditions. Where knowledge is available, we highlight the role of other hormones in dictating these phenotypes and describe those instances where our knowledge of known plant hormones and their interactions falls considerably short of explaining the phenotypes. This review will focus on bud outgrowth in herbaceous species because knowledge on the role of strigolactones in shoot branching to date barely extends beyond this group of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam H, Ouellet F, Kane NA, Agharbaoui Z, Major G, Tominaga Y et al (2007) Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development. Plant Cell Physiol 48:1192–1206

    CAS  PubMed  Google Scholar 

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  PubMed  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M et al (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    CAS  PubMed  Google Scholar 

  • Bainbridge K, Sorefan K, Ward S, Leyser O (2005) Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J 44:569–580

    CAS  PubMed  Google Scholar 

  • Bangerth F (1994) Response of cytokinin concentration in the xylem exudate of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment and relationship to apical dominance. Planta 194:439–442

    CAS  Google Scholar 

  • Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563

    CAS  PubMed  Google Scholar 

  • Beveridge CA (2000) Long-distance signalling and a mutational analysis of branching in pea. Plant Growth Regul 32:193–203

    CAS  Google Scholar 

  • Beveridge CA, Murfet IC (1996) The gigas mutant in pea is deficient in the floral stimulus. Physiol Plant 96:637–645

    CAS  Google Scholar 

  • Beveridge CA, Ross JJ, Murfet IC (1992) Mutant dn influences dry matter distribution, assimilate partitioning and flowering in Lathyrus odoratus L. J Exp Bot 43:55–62

    Google Scholar 

  • Beveridge CA, Symons GM, Murfet IC, Ross JJ, Rameau C (1997) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol 115:1251–1258

    CAS  Google Scholar 

  • Beveridge CA, Batge SL, Ross JJ, Murfet IC (2001) Hormone physiology of pea mutants prevented from flowering by mutations gi or veg1. Physiol Plant 113:285–291

    CAS  PubMed  Google Scholar 

  • Beveridge CA, Weller JL, Singer SR, Hofer JM (2003) Axillary meristem development. Budding relationships between networks controlling flowering, branching and photoperiod responsiveness. Plant Physiol 131:927–934

    CAS  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Fergusion BJ, Rameau CA, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    CAS  PubMed  Google Scholar 

  • Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868

    CAS  PubMed  Google Scholar 

  • Casal JJ, Fankhauser C, Coupland G, Blázquez MA (2004) Signalling for developmental plasticity. Trends Plant Sci 9:309–314

    CAS  PubMed  Google Scholar 

  • Cerdán PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885

    PubMed  Google Scholar 

  • Chatfield SP, Stirnberg P, Forde BG, Leyser O (2000) The hormonal regulation of axillary bud growth in Arabidopsis. Plant J 24:159–169

    CAS  PubMed  Google Scholar 

  • Cline M (1996) Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Ann Bot 78:255–266

    CAS  Google Scholar 

  • Cline M (2000) Execution of the auxin replacement apical dominance experiment in temperate woody species. Am J Bot 87:182–190

    PubMed  Google Scholar 

  • Cline MG, Riley L (1984) The presentation time for shoot inversion release of apical dominance in Pharbitis nil. Ann Bot 53:897–900

    Google Scholar 

  • Cline MG, Chatfield SP, Leyser O (2001) NAA restores apical dominance in the axr3-1 mutant of Arabidopsis thaliana. Ann Bot 87:61–65

    CAS  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA et al (1972) Germination stimulants. II. The structure of strigol—a potent seed germination stimulant for witchweed (Striga lutea Lour.). J Am Chem Soc 94:6198–6199

    CAS  Google Scholar 

  • Davies CR, Wareing PF (1965) Auxin-directed transport of radiophosphorus in stems. Planta 65:139–156

    CAS  Google Scholar 

  • Devitt ML, Stafstrom JP (1995) Cell cycle regulation during growth-dormancy cycles in pea axillary buds. Plant Mol Biol 29:255–265

    CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    CAS  PubMed  Google Scholar 

  • Doust AN (2007) Grass architecture: genetic and environmental control of branching. Curr Opin Plant Biol 10:21–25

    PubMed  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA 101:9045–9050

    CAS  PubMed  Google Scholar 

  • Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol 142:812–819

    CAS  PubMed  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    CAS  PubMed  Google Scholar 

  • Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin and strigolactone in regulating shoot branching. Plant Physiol 149:1929–1944

    CAS  PubMed  Google Scholar 

  • Finlayson S (2007) Arabidopsis TEOSINTE BRANCHED1-LIKE1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol 48:667–677

    CAS  PubMed  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    CAS  PubMed  Google Scholar 

  • Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A et al (2007) Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol 143:1418–1428

    CAS  PubMed  Google Scholar 

  • Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Peuch-Pagès V, Dun EA, Pillot J-P et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    CAS  PubMed  Google Scholar 

  • Grbić B, Bleecker AB (2000) Axillary meristem development in Arabidopsis thaliana. Plant J 21:215–223

    PubMed  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge CA, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    CAS  PubMed  Google Scholar 

  • Hecht V, Foucher F, Ferrándiz C, Macknight R, Navarro C, Morin J et al (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    CAS  PubMed  Google Scholar 

  • Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531

    CAS  Google Scholar 

  • Hu W, Zhang S, Zhao Z, Sun C, Zhao Y, Luo D (2003) The analysis of the structure and expression of OsTB1 gene in rice. J Plant Physiol Mol Biol 29:507–514

    CAS  Google Scholar 

  • Humphrey AJ, Beale MH (2006) Strigol: biogenesis and physiological activity. Phytochemistry 67:636–640

    CAS  PubMed  Google Scholar 

  • Husain SM, Linck AJ (1966) Relationship of apical dominance to the nutrient accumulation in Pisum sativum var. Alaska. Physiol Plant 19:992–1010

    CAS  Google Scholar 

  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86

    CAS  PubMed  Google Scholar 

  • Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528

    CAS  PubMed  Google Scholar 

  • Jiang F, Li C, Jeschke WD, Zhang F (2001) Effect of top excision and replacement by 1-naphthylacetic acid on partition and flow of potassium in tobacco plants. J Exp Bot 52:2143–2150

    CAS  PubMed  Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA et al (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are co-regulated by other long-distance signals. Plant Physiol 142:1014–1026

    CAS  PubMed  Google Scholar 

  • Kebrom TH, Brutnell TP (2007) The molecular analysis of the shade avoidance syndrome in the grasses has begun. J Exp Bot 58:3079–3089

    CAS  PubMed  Google Scholar 

  • Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117

    CAS  PubMed  Google Scholar 

  • King RA, Van Staden J (1988) Differential responses of buds along the shoot of Pisum sativum to isopentyladenine and zeatin application. Plant Physiol Biochem 26:253–259

    CAS  Google Scholar 

  • Kitazawa D, Miyazawa Y, Fujii N, Hoshino A, Iida S, Nitasaka E et al (2008) The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release. Plant Cell Physiol 49:891–900

    CAS  PubMed  Google Scholar 

  • Klee H (2008) Plant biology: hormones branch out. Nature 455:176–177

    CAS  PubMed  Google Scholar 

  • Kyozuka J (2007) Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol 10:442–446

    CAS  PubMed  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and eco-dormancy: physiological terminology and classification for dormancy research. Hortic Sci 22:371–377

    Google Scholar 

  • Leyser O (2008) Strigolactones and shoot branching: a new trick for a young dog. Dev Cell 15:337–338

    CAS  PubMed  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    CAS  PubMed  Google Scholar 

  • Li CJ, Bangerth F (1999) Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol Plant 106:415–420

    CAS  Google Scholar 

  • Liew LC, Hecht V, Laurie RE, Knowles CL, Vander Schoor JK, Macknight RC, Weller JL (2009) DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. Plant Cell 21:3198–3211

    CAS  PubMed  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z et al (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    CAS  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    PubMed  Google Scholar 

  • López-Ráez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W et al (2009) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 65:471–477

    PubMed  Google Scholar 

  • Mader JC, Turnbull CGN, Emery RJN (2003) Transport and metabolism of xylem cytokinins during lateral bud release in decapitated chickpea (Cicer arietinum) seedlings. Physiol Plant 117:118–129

    CAS  Google Scholar 

  • Madoka Y, Mori H (2000) Acropetal disappearance of PsAD1 Protein in pea axillary buds after the release of apical dominance. Plant Cell Physiol 41:556–564

    CAS  PubMed  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    CAS  PubMed  Google Scholar 

  • McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149:46–55

    CAS  PubMed  Google Scholar 

  • McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374

    CAS  PubMed  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    CAS  PubMed  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    CAS  PubMed  Google Scholar 

  • Morris DA (1977) Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.): some implication for polarity and apical dominance. Planta 136:91–96

    CAS  Google Scholar 

  • Morris DA, Johnson CF (1990) The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem. Planta 181:117–124

    CAS  Google Scholar 

  • Morris SE, Cox MCH, Ross JJ, Krisantini S, Beveridge CA (2005) Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol 138:1665–1672

    CAS  PubMed  Google Scholar 

  • Murfet IC, Symons GC (2000a) Double mutant rms2 rms5 expresses a transgressive, profuse branching phenotype. Pisum Genet 32:33–38

    Google Scholar 

  • Murfet IC, Symons GC (2000b) The pea rms2-1 rms4-1 double-mutant phenotype is transgressive. Pisum Genet 32:59–60

    Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750

    CAS  PubMed  Google Scholar 

  • Napoli C (1996) Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant Physiol 111:27–37

    CAS  PubMed  Google Scholar 

  • Napoli CA, Beveridge CA, Snowden KC (1999) Re-evaluating concepts of apical dominance and the control of axillary bud outgrowth. Curr Top Dev Biol 44:127–169

    CAS  PubMed  Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Nat Acad Sci 101(21):8039–8044

    PubMed  Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74

    CAS  PubMed  Google Scholar 

  • Ongaro V, Bainbridge K, Williamson L, Leyser O (2008) Interactions between axillary branches of Arabidopsis. Mol Plant 1:388–400

    CAS  PubMed  Google Scholar 

  • Ouellet F, Overoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841

    CAS  PubMed  Google Scholar 

  • Phillips IDJ (1968) Nitrogen, phosphorus and potassium distribution in relation to apical dominance in dwarf bean (Phaseolus vulgaris, c.v. Canadian Wonder). J Exp Bot 19:617–627

    CAS  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D, Ben-Nairn O, Ron N, Adir N et al (2001) Tomato SP-interacting proteins define a conserved signalling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    CAS  PubMed  Google Scholar 

  • Prasad TK, Cline MG (1985) Shoot inversion-induced ethylene in Pharbitis nil induces the release of apical dominance by restricting shoot elongation. Plant Sci 38:163–172

    CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R et al (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    CAS  PubMed  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    CAS  PubMed  Google Scholar 

  • Robson PRH, Whitelam GC, Smith H (1993) Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome B. Plant Physiol 102:1179–1184

    CAS  PubMed  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    CAS  PubMed  Google Scholar 

  • Sachs T, Thimann K (1964) Release of lateral buds from apical dominance. Nature 201:939–940

    Google Scholar 

  • Sachs T, Thimann KV (1967) The role of auxins and cytokinins in the release of buds from dominance. Am J Bot 54:136–144

    CAS  Google Scholar 

  • Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y et al (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA 106:8392–8397

    CAS  PubMed  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    CAS  PubMed  Google Scholar 

  • Shimizu S, Mori H (1998) Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol 39:255–262

    CAS  PubMed  Google Scholar 

  • Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413

    CAS  PubMed  Google Scholar 

  • Shimizu-Sato S, Ike Y, Mori H (2008) PsRBR1 encodes a pea retinoblastoma-related protein that is phosphorylated in axillary buds during dormancy-to-growth transition. Plant Mol Biol 66:125–135

    CAS  PubMed  Google Scholar 

  • Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435

    CAS  PubMed  Google Scholar 

  • Snowden KC, Napoli CA (2003) A quantitative study of lateral branching in petunia. Funct Plant Biol 30:987–994

    Google Scholar 

  • Stafstrom JP (1993) Axillary bud development in pea: apical dominance, growth cycles, hormonal regulation and plant architecture. In: Amasino RM (ed) Cellular communication in plants. Plenum Press, New York, pp 75–86

  • Stafstrom JP, Sussex IM (1988) Patterns of protein synthesis in dormant and growing vegetative buds of pea. Planta 176:497–505

    CAS  Google Scholar 

  • Stafstrom JP, Sussex IM (1992) Expression of a ribosomal protein gene in axillary buds of pea seedlings. Plant Physiol 100:1494–1502

    CAS  PubMed  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1992) Rapid alteration in growth rate and electric potentials upon stem excision in pea seedlings. Planta 187:523–531

    CAS  PubMed  Google Scholar 

  • Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    CAS  PubMed  Google Scholar 

  • Stirnberg P, Furner IJ, Leyser HMO (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94

    CAS  PubMed  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M et al (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520

    CAS  PubMed  Google Scholar 

  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K et al (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062

    CAS  PubMed  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    CAS  PubMed  Google Scholar 

  • Taylor SA, Murfet IC (1994) A short day mutant in pea is deficient in the floral stimulus. Flower Newsl 18:39–43

    Google Scholar 

  • Thimann KV, Skoog F (1933) Studies on the growth hormone of plants III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci USA 19:714–716

    CAS  PubMed  Google Scholar 

  • Thimann KV, Skoog F (1934) On the inhibition of bud development and other functions of growth substances in Vicia faba. Proc R Soc Lond B Biol Sci 114:317–339

    CAS  Google Scholar 

  • Turnbull CGN, Raymond MAA, Dodd IC, Morris SE (1997) Rapid increases in cytokinin concentration in lateral buds of chickpea (Cicer arietinum L.) during the release of apical dominance. Planta 202:271–276

    CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    CAS  PubMed  Google Scholar 

  • Wang G, Römheld V, Li C, Bangerth F (2006) Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.). J Plant Physiol 163:591–600

    CAS  PubMed  Google Scholar 

  • Weberling F (1989) Morphology of flowers and inflorescences. Cambridge University Press, Cambridge

    Google Scholar 

  • Weller JL, Hecht V, Liew LC, Sussmilch FC, Wenden B, Knowles CL et al (2009) Update on the genetic control of flowering in garden pea. J Exp Bot 60:2493–2499

    CAS  PubMed  Google Scholar 

  • Woo HE, Chung KM, Park JH, Oh SA, Ahn T, Hong SH et al (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    CAS  PubMed  Google Scholar 

  • Yan H, Saika H, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M (2007) Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes Genet Syst 82:361–366

    CAS  PubMed  Google Scholar 

  • Yang HY, Li CJ, Zhang FS (2007) Shoot apex demand determines assimilate and nutrients partitioning and nutrient-uptake rate in tobacco plants. J Integr Plant Biol 49:1654–1661

    CAS  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225(4):1031–1038

    CAS  PubMed  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W et al (2006) The rice HIGH-TILLERING DWARF1 encoding an orthologue of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–696

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Australian Research Council for grant funding and the Australian Postgraduate Award scheme for funding to AH and TW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Anne Beveridge.

Additional information

Tanya Waldie and Alice Hayward contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldie, T., Hayward, A. & Beveridge, C.A. Axillary bud outgrowth in herbaceous shoots: how do strigolactones fit into the picture?. Plant Mol Biol 73, 27–36 (2010). https://doi.org/10.1007/s11103-010-9599-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9599-2

Keywords

Navigation