Skip to main content
Log in

Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Previous microarray analyses of Arabidopsis roots identified two closely related WRKY transcription factors (WRKY25 and WRKY33) among the transcripts that increased in abundance following treatment with NaCl. Here, we report further characterization of these genes, which we found to be inducible by a variety of abiotic stresses in an SOS-pathway independent manner, although WRKY33 induction was dependent on ABA signaling. Transcripts of both genes were detected in roots and leaves, while specific patterns of enrichment were observed in stems and floral buds for WRKY25 and WRKY33, respectively. We also identified upstream intergenic regions from each gene that were sufficient to confer stress-inducible expression on a reporter gene. However, the stress sensitivity of wrky25 null mutants did not differ from wild-type under any assay condition, while wrky33 null mutants and wrky25wrky33 double mutants showed only a moderate increase in NaCl-sensitivity, suggesting functional redundancy with other transcription factors. Nevertheless, overexpression of WRKY25 or WRKY33 was sufficient to increase Arabidopsis NaCl tolerance, while increasing sensitivity to ABA. Through microarray analyses of relevant genotypes, we identified 31 and 208 potential downstream targets of WRKY25 and WRKY33, respectively, most of which contained a W-box in their upstream regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi:10.1126/science.1086391

    Article  PubMed  Google Scholar 

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589. doi:10.1038/sj.emboj.7600737

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Plant Biotechnol 13:146–150

    Article  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741. doi:10.1105/tpc.016238

    Article  PubMed  CAS  Google Scholar 

  • Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126:643–655. doi:10.1104/pp.126.2.643

    Article  PubMed  CAS  Google Scholar 

  • Blein JP, Coutos-Thévenot P, Marion D, Ponchet M (2002) From elicitins to lipid transfer proteins: a new insight in cell signaling involved in plant defence mechanism. Trends Plant Sci 7:293–296. doi:10.1016/S1360-1385(02)02284-7

    Article  PubMed  CAS  Google Scholar 

  • Cavalier DM, Keegstra K (2006) Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexose. J Biol Chem 281:34197–34207. doi:10.1074/jbc.M606379200

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu J-K (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236. doi:10.1093/jxb/erh005

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17. doi:10.1104/pp.105.063743

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371. doi:10.1016/j.pbi.2007.04.020

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid activation by WRKY transcription factors. EMBO J 18:4689–4699. doi:10.1093/emboj/18.17.4689

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206. doi:10.1016/S1360-1385(00)01600-9

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Fukuda Y (1997) Interaction of tobacco nuclear proteins with an elicitor responsive element in the promoter of a basic class I chitinase gene. Plant Mol Biol 34:81–87. doi:10.1023/A:1005737128339

    Article  PubMed  CAS  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445. doi:10.1104/pp.106.078717

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442. doi:10.1046/j.1365-313x.1998.00310.x

    Article  PubMed  CAS  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468. doi:10.1093/pcp/pce061

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Nakai K (2006) Protein subcellular localization prediction with WoLF PSORT. Proceedings of the 4th annual Asia Pacific bioinformatics conference APBC06, Taipei, Taiwan, pp 39–48

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665. doi:10.1046/j.1365-313x.2000.00913.x

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y-Q, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25. doi:10.1186/1471-2229-6-25

    Article  PubMed  Google Scholar 

  • Jiang Y-Q, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607. doi:10.1093/jxb/erm207

    Article  PubMed  CAS  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375. doi:10.1105/tpc.001404

    Article  PubMed  CAS  Google Scholar 

  • Kilili KG, Atanassova N, Vardanyan A, Clatot N, Al-Sabarna K, Kanellopoulos PN, Makris AM, Kampranis SC (2004) Differential roles of Tau class glutathione S-transferases in oxidative stress. J Biol Chem 279:24540–24551. doi:10.1074/jbc.M309882200

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Léon-Kloosterziel KM, Schwartz SH, Zeevaart JA (1998) The genetic and molecular dissection of abscisic acid biosynthesis, signal transduction in Arabidopsis. Plant Physiol Biochem 36:83–89. doi:10.1016/S0981-9428(98)80093-4

    Article  CAS  Google Scholar 

  • Lagace M, Matton DP (2004) Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185–189. doi:10.1007/s00425-004-1253-2

    Article  PubMed  CAS  Google Scholar 

  • Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26:15–22. doi:10.1046/j.1365-313x.2001.01003.x

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331. doi:10.1105/tpc.016980

    Article  PubMed  CAS  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact 20:420–429. doi:10.1094/MPMI-20-4-0420

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400. doi:10.1023/A:1015255030047

    Article  PubMed  CAS  Google Scholar 

  • Ma SS, Gong QQ, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107. doi:10.1093/jxb/erj098

    Article  PubMed  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720–729. doi:10.1111/j.1365-313X.2003.01998.x

    Article  PubMed  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgen A, Schmid J, Lawton K, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410. doi:10.1038/82521

    Article  PubMed  CAS  Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold- and dehydration-response in barley. Plant Mol Biol 55:399–416. doi:10.1007/s11103-004-0906-7

    Article  PubMed  CAS  Google Scholar 

  • Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470. doi:10.1104/pp.119.2.463

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    PubMed  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant. doi:101111/j1399-3054200801090x

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R (2002) Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31:319–330

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743. doi:10.1074/jbc.M313350200

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133. doi:10.1046/j.1365-313X.2001.01131.x

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    PubMed  CAS  Google Scholar 

  • Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K (2007) Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics 277:631–646. doi:10.1007/s00438-007-0214-4

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to dehydration, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199. doi:10.1016/S0958-1669(03)00030-2

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994. doi:10.1105/tpc.004630

    Article  PubMed  CAS  Google Scholar 

  • Skriver K, Olsen FL, Rogers JC, Mundy J (1991) cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88:7266–7270. doi:10.1073/pnas.88.16.7266

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040. doi:10.1073/pnas.94.3.1035

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092. doi:10.1105/tpc.014597

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Kawazu T, Koyama H (2004) RNA isolation from siliques, dry seeds, and other tissues of Arabidopsis thaliana. Biotechniques 37:542–544

    PubMed  CAS  Google Scholar 

  • Taylor CB (1997) Promoter fusion analysis: an insufficient measure of gene expression. Plant Cell 9:273–275

    Article  CAS  Google Scholar 

  • Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721

    PubMed  CAS  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498. doi:10.1016/j.pbi.2004.07.012

    Article  PubMed  Google Scholar 

  • van der Graaff E, Hooykaas PJJ, Keller B (2002) Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J 32:819–830. doi:10.1046/j.1365-313X.2002.01470.x

    Article  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K (2006) Methods and concepts in quantifying resistance to dehydration, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539. doi:10.1111/j.1365-313X.2005.02593.x

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, NY, USA

    Google Scholar 

  • Xie Z, Zhang ZL, Zou XL, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189. doi:10.1104/pp.104.054312

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu J-K (2002a) Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596. doi:10.1074/jbc.M109275200

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker K, Zhu J-K (2002b) Cell signaling during cold, dehydration, and salt stress. Plant Cell 14:S165–S183. doi:10.1105/tpc.010278

    Article  PubMed  CAS  Google Scholar 

  • Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004a) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135:507–515. doi:10.1104/pp.104.038612

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Escamilla-Trevino L, Zeng L, Lalgondar M, Bevan D, Winkel B, Mohamed A, Cheng CL, Shih MC, Poulton J, Esen A (2004b) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55:343–367. doi:10.1007/s11103-004-0790-1

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to dehydration, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi:10.1146/annurev.arplant.57.032905.105444

    Article  PubMed  CAS  Google Scholar 

  • Yang LX, Wang RY, Ren F, Liu J, Cheng J, Lu YT (2005) AtGLB1 enhances the tolerance of Arabidopsis to hydrogen peroxide stress. Plant Cell Physiol 46:1309–1316. doi:10.1093/pcp/pci140

    Article  PubMed  CAS  Google Scholar 

  • Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530. doi:10.1007/s00425-004-1466-4

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440. doi:10.1016/S1369-5266(03)00081-5

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TD, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513. doi:10.1104/pp.103.034967

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605. doi:10.1111/j.1365-313X.2006.02901.x

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2. doi:10.1186/1471-2229-7-2

    Article  PubMed  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503. doi:10.1111/j.1467-7652.2008.00336.x

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406. doi:10.1016/S1369-5266(00)00192-8

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi:10.1104/pp.104.046367

    Article  PubMed  CAS  Google Scholar 

  • Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779. doi:10.1074/jbc.M408536200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the ABRC for providing mutant seeds and Mohsen Mohammadi for help in statistical analyses. The project was funded by a NSERC (Natural Sciences and Engineering Research Council) Discovery grant to M.K.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Deyholos.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Deyholos, M.K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69, 91–105 (2009). https://doi.org/10.1007/s11103-008-9408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9408-3

Keywords

Navigation