Skip to main content

Advertisement

Log in

Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Despite the importance of the senescence processes in plants, our knowledge on regulatory mechanisms of senescence is still poor. WRKY transcription factors have been shown to be involved in the regulation of leaf senescence. However, almost nothing is known about the upstream regulation of the senescence specific expression of WRKY factors. Therefore, we characterized proteins that bind and activate the promoter of WRKY53, which participates in leaf senescence in Arabidopsis thaliana. Surprisingly, a mitogen activated protein kinase kinase kinase (MEKK1) was identified as a DNA-binding protein. The binding motif for MEKK1 in the WRKY53 promoter could be characterized and promoter:GUS analyses revealed that this region is important for the switch of WRKY53 expression from a leaf age dependent to a systemic plant age dependent expression during bolting time. In addition to its promotor-binding activity, MEKK1 was also able to interact with the WRKY53 protein. Using bimolecular fluorescence complementation assays the complex formation of MEKK1 and WRKY53 could be localized predominately in the nucleus of Arabidopsis cells. MEKK1 could also phosphorylate WRKY53 in vitro and phosphorylation could increase DNA-binding activity of WRKY53 in vitro and transcription of a WRKY53 promoter driven reporter gene in vivo. These results suggest that MEKK1 is a bifunctional protein: it binds to the promoter of the WRKY53 gene regulating the switch from a leaf age dependent to a plant age dependent expression and it can phosopharylate WRKY53 in vitro increasing its DNA binding activity. Thus, MEKK1 might be able to take a very direct short cut in mitogen-activated protein kinase (MAPK) signalling by directly phosphorylating a transcription factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NHT, Zhu SJ, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Nielsen HB, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP (1999) Gene expression and the thiol redox state. Free Radical Biol Med 27:936–944

    Article  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  PubMed  CAS  Google Scholar 

  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell 12:2201–2218

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotech J 1:3–22

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  PubMed  CAS  Google Scholar 

  • Choi G, Kim J-I, Hong S-W, Shin B, Choi G, Blakeslee JJ, Murphy AS, Seo YW, Kim K, Koh E-J, Song P-S, Lee H (2005) A possible role for NDPK2 in the regulation of auxin-mediated responses for plantgrowth and development. Plant Cell Physiol 46:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profile of the WRKY gene superfamily during plant defence. Plant Mol Biol 51:21–37

    Article  PubMed  CAS  Google Scholar 

  • Edmunds JW, Mahadevan LC (2004) MAP kinases as structural adaptors and enzymatic activators in transcription complexes. J Cell Sci 117:3715–3723

    Article  PubMed  CAS  Google Scholar 

  • Edmunds JW, Mahadevan LC (2006) Cell signaling. Protein kinases seek close encounters with active genes. Science 313:449–451

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory elements (PLACE) database. Nucl Acid Res 27:297–300

    Article  CAS  Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Lee J, Rudd JJ, Macioszek VK, Scheel D (2004) Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J Biol Chem 279:22440–22448

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence of jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  PubMed  CAS  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  PubMed  CAS  Google Scholar 

  • MAPK Group (Kazuya Ichimura et al) (2002) Mitogen-activated-protein-kinase cascades in plants: new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    PubMed  CAS  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    Article  PubMed  CAS  Google Scholar 

  • Morrison DK, Davis RJ (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19:91–118

    Article  PubMed  CAS  Google Scholar 

  • Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signalling through direct MAPK interaction. J Biol Chem 27:26959–26966

    Article  Google Scholar 

  • Nakagami H, Pitschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    Article  PubMed  CAS  Google Scholar 

  • Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704

    Article  PubMed  CAS  Google Scholar 

  • Navabpour S, Morris A, Allen R, Harrison E, Mackerness SAH, Buchanan-Wollaston V (2003) Expression of senescence–enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    Article  PubMed  CAS  Google Scholar 

  • Pokholok DK, Zeitlinge J, Hannett NM, Reynolds DB, Young RA (2006) Activated signal transduction kinases frequently occupy target genes. Science 313:533–536

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in Maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Tang DZ, Innes RW (2002) Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J 32:975–983

    Article  PubMed  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi F, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  PubMed  CAS  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Wan JR, Zhang SQ, Stacey G (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Path 5:125–135

    Article  CAS  Google Scholar 

  • Wrzaczek M, Hirt H (2001) Plant MAP kinase pathways: how many and what for? Biol Cell 93:81–87

    Article  PubMed  CAS  Google Scholar 

  • Xiang CB, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40:711–717

    Article  PubMed  CAS  Google Scholar 

  • Ye ZZ, Rodriguez R, Tran A, Hoang H, de los Santos D, Brown S, Vellanoweth RL (2000) The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci 158:115–127

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf U, Kolb D, Laun T, Rentsch D (2004) Senescence related gene expression profiles of rosette leaves of Arabidopsis thaliana: leaf age versus plant age. Plant Biol 6:178–183

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Orendi G, Heinlein C, Zentgraf U (2006) Senescence specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Nottingham Arabidopsis Stock Centre (NASC) for providing the seeds of the T-DNA insertion lines and the DFG (SFB446) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Zentgraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Y., Laun, T.M., Smykowski, A. et al. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65, 63–76 (2007). https://doi.org/10.1007/s11103-007-9198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9198-z

Keywords

Navigation