Skip to main content
Log in

Expression of α-expansin genes during root acclimations to O2 deficiency in Rumex palustris

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Thirteen α-expansin genes were isolated from Rumex palustris, adding to the six already documented for this species. Five α-expansin genes were selected for expression studies in various organs/tissues of R. palustris, with a focus on roots exposed to aerated or O2-deficient conditions, using real-time RT-PCR. Several cases of differential expression of α-expansin genes in the various root types of R. palustris were documented, and the identity of the dominant transcript differed between root types (i.e., tap root vs. lateral roots vs. adventitious roots). Several genes were expressed differentially in response to low O2. In situ hybridizations showed expansin mRNA expression in the oldest region of the tap root was localized to cells near the vascular cambium; this being the first report of expansin expression associated with secondary growth in roots. In situ hybridization also showed abundant expression of expansin mRNA in the most apical 1 mm of adventitious roots. Such early expression of expansin mRNA in cells soon after being produced by the root apex presumably enables cell wall loosening in the elongation zone of roots. In addition, expression of some expansin mRNAs increased in ‘mature zones’ of roots; these expansins might be involved in root hair formation or in formation of lateral root primordia. The present findings support the notion that large gene families of α-expansins enable flexibility in expression for various organs and tissues as a normal part of plant development, as well as in response to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong, W. 1979. Aeration in higher plants. Adv. Bot. Res. 7: 225–332.

    Google Scholar 

  • Catala, C., Rose, J. K. C. and Bennett, A. B. 2000. Auxinregulatedgenes encoding cell wall-modifying proteins areexpressed during early tomato fruit growth. Plant Physiol. 122; 527–534.

    PubMed  Google Scholar 

  • Cho, H.-T. and Cosgrove, D. J. 2002. Regulation of root hairinitiation and expansin gene expression in arabidopsis. PlantCell 14: 3237–3253.

    Google Scholar 

  • Cho, H.-T. and Kende, H. 1998. Tissue localization of Expansions in deepwater rice. Plant J. 15: 805–812.

    PubMed  Google Scholar 

  • Chomczynski, P. and Sacchi, N. 1987. Single-step method ofRNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162: 156–159.

    PubMed  Google Scholar 

  • Colmer, T. D. 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26: 17–36.

    Google Scholar 

  • Cosgrove, D. J. 2000a. Expansive growth of plant cell walls. Plant Physiol. Biochem. 38: 109–124.

    PubMed  Google Scholar 

  • Cosgrove, D. J. 2000b. Loosening of plant cell walls by Expansions. Nature 407: 321–326.

    PubMed  Google Scholar 

  • Cox, M. C. H., Millenaar, F. F., de Jong van Berkel, Y. E. M., Peeters, A. J. M. and Voesenek, L. A. C. J. 2003. Plant movement; submergence-induced petiole elongation in Rumexpalustris depends on hyponastic growth. Plant Physiol 132: 282–291.

    PubMed  Google Scholar 

  • Drews, G. N. 1998. In situ hybridization. In: J. M. Martinez-Zapater and J. Salinas (Eds. ), Methods in Molecular Biology Humana Press, Totowa, NJ, USA. 82: pp. 353–371.

    Google Scholar 

  • Fleming, A. J., McQueen-Mason, S. J., Mandel, T. and Kuhlemeier, C. 1997. Induction of leaf primordia by the cell wall protein expansin. Science 276: 1415–1418.

    Google Scholar 

  • Feinburg, A. P. and Vogelstein, B. 1984. A technique forradiolabeling DNA restriction endonuclease fragments tohigh specific activity [Addendum], Anal. Biochem. 137: 266–267.

    PubMed  Google Scholar 

  • Hutchison, K. W., Singer, P. B., McInnis, S., Diaz-Sala, C. and Greenwood, M. S. 1999. Expansions are conserved in conifersand expressed in hypocotyls in response to exogenous auxin. Plant Physiol. 120: 827–831.

    PubMed  Google Scholar 

  • Jackson, M. B. and Drew, M. C. 1984. Effects of flooding ongrowth and metabolism of herbaceous plants. In: T. T. Kozlowski, (Ed. ), Flooding and Plant Growth, Academic Press, New York, pp. 47–128.

    Google Scholar 

  • Jackson, M. B. and Armstrong, W. 1999. Formation of aerenchymaand the processes of plant ventilation in relation tosoil flooding and submergence. Plant Biol. 1: 274–287.

    Google Scholar 

  • Justin, S. H. F. W. and Armstrong W. 1987. The anatomicalcharacteristics of roots and plant response to soil flooding. New Phytol. 106: 465–95.

    Google Scholar 

  • Karnovsky, M. J. 1965. A formaldehyde–glutaraldehyde fixativeof high osmolarity for use in electron microscopy. J. Cell. Biol. 27: 137A–138A.

    Google Scholar 

  • Kende, H., van der Knaap, E. and Cho, H.-T. 1998. Deep water rice: a model plant to study stem elongation. Plant Physiol. 118: 1105–1110.

    PubMed  Google Scholar 

  • Kende, H., Bradford, K. J., Brummell, D. A., Cho, H.-T., Cosgrove, D. J., Fleming, A. J., Gehring, C., Lee, Y., McQueen-Mason, S. J., Rose, J. K. C. and Voesenek L. A. C. J. 2004. Nomenclature for members of the expansin superfamilyof genes and proteins. Plant Mol. Biol. 55: 311–314.

    PubMed  Google Scholar 

  • Kiefer, E., Heller, W. and Ernst, D. 2000. A simple and efficientprotocol for isolation of functional RNA from plant tissuesrich in secondary metabolites. Plant Mol. Biol. Rep. 18: 33–39.

    Google Scholar 

  • Laan, P., Berrevoets, M. J., Lythe, S., Armstrong, W. and Blom, C. W. P. M. 1989. Root morphology and aerenchyma formationas indicators of the flood-tolerance of Rumex species. J. Ecol. 77: 693–703.

    Google Scholar 

  • Lee, D.-K., Ahn, J. H., Song, S.-K., Choi, Y. D. and Lee, J. S. 2003. Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol. 131: 985–997.

    PubMed  Google Scholar 

  • Lee, Y. and Kende, H. 2001. Expression of beta-Expansions is correlated with internodal elongation in deepwater rice. Plant Physiol. 127: 645–654.

    PubMed  Google Scholar 

  • Lee, Y., Choi, D. and Kende, H. 2001. Expansions: ever increasing numbers and functions. Curr. Opin. Plant Biol. 4: 527–532.

    PubMed  Google Scholar 

  • Lee, Y. and Kende, H. 2002. Expression of alpha-Expansions andexpansin-like genes in deepwater rice. Plant Physiol. 130: 1396–1404.

    PubMed  Google Scholar 

  • Li, Y., Darley, C. P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S. L. and McQueen-Mason, S. J. 2002. Plant Expansions are a complex multigene family with an ancient evoluionary origin. Plant Physiol. 128: 854–864.

    PubMed  Google Scholar 

  • Link, B. M. and Cosgrove, D. J. 1998. Acid-growth response anda-expansin in suspension cultures of bright yellow 2 tobacco. Plant Physiol. 118: 907–916.

    PubMed  Google Scholar 

  • Livak, K. J., Flood, S. J. A., Marmaro, J., Giusti, W. and Deetz, K. 1995. Oligonucleotides with fluorescent dyes at oppositeends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Meth. Applic 4: 357–362.

    Google Scholar 

  • Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relativegene expression data using real-time quantitative PCR and the 2) DDCT method. Methods 25: 402–408.

    PubMed  Google Scholar 

  • McQueen-Mason, S. J. and Cosgrove, D. J. 1995. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107: 87–100.

    PubMed  Google Scholar 

  • McQueen-Mason, S. J., Durachko, D. M. and Cosgrove, D. J. 1992. Two endogenous proteins that induce cell wallextension in plants. Plant Cell 4: 1425–1433.

    PubMed  Google Scholar 

  • Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signalpeptides and prediction of their cleavage sites. Prot. Engin10: 1–6.

  • Peeters, A. J. M., Cox, M. C. H., Benschop, J. J., Vreeburg, R. A. M., Bou, J. and Voesenek L. A. C. J. 2002. Submergenceresearch using Rumex palustris as a model; looking back andgoing forward. J. Exp. Bot. 53: 391–398.

    PubMed  Google Scholar 

  • Pien, S., Wyrzykowska, J., McQueen-Mason, S. J., Smart, C. and Fleming, A. 2001. Local expression of expansin inducesthe entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98: 11812–11817.

    PubMed  Google Scholar 

  • Ponnamperuma, F. N. 1984. Effects of flooding on soils. In: T. T. Kozlowski (Ed. ) Flooding and Plant Growth. AcademicPress, New York, pp. 9–45.

    Google Scholar 

  • Raskin, I. 1983. A method for measuring leaf volume, density, thickness, and internal gas volume. Hort. Sci. 18: 698–699.

    Google Scholar 

  • Rose, J. K. C., Cosgrove, D. J., Albersheim, P., Darvill, A. G. and Bennett, A. B. 2000. Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol. 123: 1583–1592.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. MolecularCloning– a laboratory manual,2nd ed Cold Spring Harbor, NY, USA.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A. R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    PubMed  Google Scholar 

  • Thomson, C. J., Armstrong, W., Waters, I. and Greenway, H. 1990. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant CellEnviron. 13: 395–403.

    Google Scholar 

  • Vartapetian, B. B. and Jackson, M. B. 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79: 3–20.

    Google Scholar 

  • Visser, E. J. W., Blom, C. W. P. M. and Voesenek, L. A. C. J. 1996a. Flooding-induced adventitious root formation in Rumex: morphology and development in an ecological perspective. Acta Bot. Neerl. 45: 17–28.

    Google Scholar 

  • Visser, E. J. W., Cohen, J. D., Barendse, G. W. M., Blom, C. W. P. M. and Voesenek, L. A. C. J. 1996b. An ethylenemediatedincrease in sensitivity to auxin induces adventitiousroot formation in flooded Rumex palustris Sm. Plant Physiol. 112: 1687–1692.

    PubMed  Google Scholar 

  • Visser, E. J. W., Colmer, T. D., Blom, C. W. P. M. and Voesenek, L. A. C. J. 2000. Changes in growth, porosity, and radialoxygen loss from adventitious roots of selected mono-anddicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ. 23: 1237–1245.

    Google Scholar 

  • Voesenek, L. A. C. J., Benschop, J. J., Bou, J., Cox, M. C. H., Groeneveld, H. W., Millenaar, F. F., Vreeburg, R. A. M. and Peeters, A. J. M. 2003. Interactions between plant hormonesregulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann. Bot. 91: 205–211.

    PubMed  Google Scholar 

  • Voesenek, L. A. C. J., Perik, P. J. M., Blom, C. W. P. M. and Sassen, M. M. A. 1990. Petiole elongation in Rumex duringsubmergence and ethylene exposure: the relative contributionsof cell division and cell expansion. J Plant Growth Reg. 9: 13–17.

    Google Scholar 

  • Voesenek, L. A. C. J., Rijnders, J. H. G. M., Peeters, A. J. M., vander Steeg, H. M. and de Kroon, H. 2004. Plant hormonesregulate fast shoot elongation under water; from genes to communities. Ecology 85: 16–27.

    Google Scholar 

  • Vreeburg, R. A. M. 2004. Expansions in submergence-inducedpetiole elongation of Rumex palustris: kinetics and regulation. Ph. D. Dissertation, Utrecht University, Utrecht, TheNetherlands.

    Google Scholar 

  • Vriezen, W. H., De Graaf, B., Mariani, C. and Voesenek, L. A. C. J. 2000. Submergence induces Expansin gene expressionin flooding–tolerant Rumex palustris and not in flooding–intolerant R. acetosa. Planta 210: 956–963.

    PubMed  Google Scholar 

  • Wiengweera, A., Greenway, H. and Thomson, C. J. 1997. The use of agar nutrient solution to simulate lack of convectionin waterlogged soils. Ann. Bot. 80: 115–123.

    Google Scholar 

  • Wu, Y., Meeley, R. B. and Cosgrove, D. J. 2001a. Analysis andexpression of the alpha-expansin and beta-expansin genefamilies in maize. Plant Physiol. 126: 222–232.

    PubMed  Google Scholar 

  • Wu, Y., Thorne, E. T., Sharp, R. E. and Cosgrove, D. J. 2001b. Modification of expansin transcript levels in the maizeprimary root at low water potentials. Plant Physiol 126: 1471–1479.

    PubMed  Google Scholar 

  • Zhang, N. and Hasenstein, K. H. 2000. Distribution of Expansionsin graviresponding maize roots. Plant Cell Physiol. 41: 1305–1312.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colmer, T.D., Peeters, A.J.M., Wagemaker, C.A.M. et al. Expression of α-expansin genes during root acclimations to O2 deficiency in Rumex palustris . Plant Mol Biol 56, 423–437 (2004). https://doi.org/10.1007/s11103-004-3844-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-3844-5

Navigation