Skip to main content

Advertisement

Log in

Pituitary pathology in traumatic brain injury: a review

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Traumatic brain injury most commonly affects young adults under the age of 35 and frequently results in reduced quality of life, disability, and death. In long-term survivors, hypopituitarism is a common complication.

Results

Pituitary dysfunction occurs in approximately 20–40% of patients diagnosed with moderate and severe traumatic brain injury giving rise to growth hormone deficiency, hypogonadism, hypothyroidism, hypocortisolism, and central diabetes insipidus. Varying degrees of hypopituitarism have been identified in patients during both the acute and chronic phase. Anterior pituitary hormone deficiency has been shown to cause morbidity and increase mortality in TBI patients, already encumbered by other complications. Hypopituitarism after childhood traumatic brain injury may cause treatable morbidity in those survivors. Prospective studies indicate that the incidence rate of hypopituitarism may be ten-fold higher than assumed; factors altering reports include case definition, geographic location, variable hospital coding, and lost notes. While the precise pathophysiology of post traumatic hypopituitarism has not yet been elucidated, it has been hypothesized that, apart from the primary mechanical event, secondary insults such as hypotension, hypoxia, increased intracranial pressure, as well as changes in cerebral flow and metabolism may contribute to hypothalamic-pituitary damage. A number of mechanisms have been proposed to clarify the causes of primary mechanical events giving rise to ischemic adenohypophysial infarction and the ensuing development of hypopituitarism.

Conclusion

Future research should focus more on experimental and clinical studies to elucidate the exact mechanisms behind post-traumatic pituitary damage. The use of preventive medical measures to limit possible damage in the pituitary gland and hypothalamic pituitary axis in order to maintain or re-establish near normal physiologic functions are crucial to minimize the effects of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agha A, Thompson CJ (2006) Anterior pituitary dysfunction following traumatic brain injury (TBI). Clin Endocrinol (Oxf) 64:481–488

    Article  Google Scholar 

  2. Benvenga S, Campenni A, Ruggeri RM, Trimarchi F (2000) Clinical review 113: hypopituitarism secondary to head trauma. J Clin Endocrinol Metab 85:353–1361

    Article  Google Scholar 

  3. Bondanelli M, Ambrosio MR, Zatelli MC, De Marinis L, degli Uberti EC, (2005) Hypopituitarism after traumatic brain injury. Eur J Endocrinol 152:679–691

    Article  CAS  PubMed  Google Scholar 

  4. Aimaretti G, Ghigo E (2005) Traumatic brain injury and hypopituitarism. Sci World J 5:777–781

    Article  CAS  Google Scholar 

  5. Bondanelli M, De Marinis L, Ambrosio MR, Monesi M, Valle D, Zatelli MC, Fusco A, Bianchi A, Farneti M, degli Uberti EC (2004) Occurrence of pituitary dysfunction following traumatic brain injury. J. Neurotrauma 21:685–696

    Article  PubMed  Google Scholar 

  6. Popovic V, Aimaretti G, Casanueva FF, Ghigo E (2005) Hypopituitarism following traumatic brain injury (TBI): Call for attention. J Endocrinol Invest 28:61–64

    Article  CAS  PubMed  Google Scholar 

  7. Schneider M, Schneider HJ, Stalla GK (2005) Anterior pituitary hormone abnormalities following traumatic brain injury. J Neurotrauma 22:937–946

    Article  PubMed  Google Scholar 

  8. Urban RJ, Harris P, Masel B (2005) Anterior hypopituitarism following traumatic brain injury. Brain Inj 19:349–358

    Article  CAS  PubMed  Google Scholar 

  9. Agha A, Phillips J, O’Kelly P, Tormey W, Thompson CJ (2005) The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med 118:1416

    Article  PubMed  Google Scholar 

  10. Lorenzo M, Peino R, Castro AI, Lage M, Popovic V, Dieguez C, Casanueva FF (2005) Hypopituitarism and growth hormone deficiency in adult subjects after traumatic brain injury: who and when to test. Pituitary 8:233–237

    Article  PubMed  Google Scholar 

  11. Baldelli R, Bellone S, Corneli G, Savastio S, Petri A, Bona G (2005) Traumatic brain injury-induced hypopituitarism in adolescence. Pituitary 8:255–257

    Article  PubMed  Google Scholar 

  12. Estes SM, Urban RJ (2005) Hormonal replacement in patients with brain injury-induced hypopituitarism: who, when and how to treat? Pituitary 8:267–270

    Article  CAS  PubMed  Google Scholar 

  13. Ghigo E, Masel B, Aimaretti G, Leon-Carrion J, Casanueva FF, Dominguez-Morales MR, Elovic E, Perrone K, Stalla G, Thompson C et al (2005) Consensus guidelines on screening for hypopituitarism following traumatic brain injury. Brain Inj 19:711–724

    Article  CAS  PubMed  Google Scholar 

  14. Giordano G, Aimaretti G, Ghigo E (2005) Variations of pituitary function over time after brain injuries: the lesson from a prospective study. Pituitary 8:227–231

    Article  PubMed  Google Scholar 

  15. Masel BE (2005) Traumatic brain injury induced hypopituitarism: the need and hope of rehabilitation. Pituitary 8:263–266

    Article  PubMed  Google Scholar 

  16. Agha A, Rogers B, Sherlock M, O’Kelly P, Tormey W, Phillips J, Thompson CJ (2004) Anterior pituitary dysfunction in survivors of traumatic brain injury. J Clin Endocrinol Metab 89:4929–4936

    Article  CAS  PubMed  Google Scholar 

  17. Aimaretti G, Ambrosio MR, Di Somma C, Fusco A, Cannavò S, Gasperi M, Scaroni C, De Marinis L, Benvenga S, degli Uberti EC, G, F, E, G, E, EC, Lombardi G, Mantero F, Martino E, Giordano G, Ghigo E (2004) Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: screening study at 3 months after the brain injury. Clin Endocrinol 61:320–326

    Article  CAS  Google Scholar 

  18. Aimaretti G, Ambrosio MR, Di Somma C, Gasperi M, Cannavò S, Scaroni C, Fusco A, Del Monte P, De Menis E, Faustini-Fustini M, Grimaldi F, Logoluso F, Razzore P, Rovere S, Benvenga S, Degli Uberti EC, De Marinis L, Lombardi G, Mantero F, Martino E, Giordano G, Ghigo E (2005) Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J Clin Endocrinol Metab 90:6085–6092

    Article  CAS  PubMed  Google Scholar 

  19. Herrmann BL, Rehder J, Kahlke S, Wiedemayer H, Doerfler A, Ischebeck W, Laumer R, Forsting M, Stolke D, Mann K (2006) Hypopituitarism following severe traumatic brain injury. Exp Clin Endocrinol Diabetes 114:316–321

    Article  CAS  PubMed  Google Scholar 

  20. Schneider M, Schneider HJ, Yassouridis A, Saller B, von Rosen F, Stalla GK (2008) Predictors of anterior pituitary insufficiency after traumatic brain injury. Clin Endocrinol (Oxf) 68:206–212

    CAS  Google Scholar 

  21. Leal-Cerro A, Flores JM, Rincon M, Murillo F, Pujol M, Garcia-Pesquera F, Dieguez C, Casanueva FF (2005) Prevalence of hypopituitarism and growth hormone deficiency in adults long-term after severe traumatic brain injury. Clin Endocrinol 62(5):525–532

    Article  CAS  Google Scholar 

  22. Lieberman SA, Oberoi AL, Gilkison CR, Masel BE, Urban RJ (2001) Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J Clin Endocrinol Metab 86(6):2752–2756

    CAS  PubMed  Google Scholar 

  23. Tanriverdi F, Senyurek H, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2006) High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab 91:2105–2111

    Article  CAS  PubMed  Google Scholar 

  24. Jr Ware J, Sherbourne C (1992) The MOS. 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473

    Article  Google Scholar 

  25. Ware JE, Kosinski M (2001) SF-36 physical & mental health summary scales: a manual for users of version 1. Quality Metric, Lincoln (RI)

    Google Scholar 

  26. Bavisetty S, Bavisetty S, McArthur DL, Dusick JR, Wang C, Cohan P, Boscardin WJ, Swerdloff R, Levin H, Chang DJ, Muizelaar JP, Kelly DF (2008) Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery 62(5):1080

    Article  PubMed  Google Scholar 

  27. Barkhoudarian G, Hovda DA, Giza CC (2016) The molecular pathophysiology of concussive brain injury—an update. Phys Med Rehabil Clin N Am 27:373–393

    Article  PubMed  Google Scholar 

  28. Heather N, Cutfield W (2011) Traumatic brain injury: is the pituitary out of harm’s way? J Pediatr 159:686–690

    Article  PubMed  Google Scholar 

  29. Personnier C, Crosnier H, Meyer P, Chevignard M, Flechtner I, Boddaert N, Breton S, Mignot C, Dassa Y, Souberbielle JC et al (2014) Prevalence of pituitary dysfunction after severe traumatic brain injury in children and adolescents: a large prospective study. J. Clin. Endocrinol. Metab. 99:2052–2060

    Article  CAS  PubMed  Google Scholar 

  30. Taylor CA, Bell JM, Breiding MJ, Xu L (2017) Traumatic brain injury–related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill Summ 66(No. SS-9):1–16

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dubourg J, Messerer M (2011) Sports-related chronic repetitive head trauma as a cause of pituitary dysfunction. Neurosurg Focus 31:E2

    Article  PubMed  Google Scholar 

  32. Jordan BD (2013) The clinical spectrum of sport-related traumatic brain injury. Nat Rev Neurol 9:222–230

    Article  CAS  PubMed  Google Scholar 

  33. Cyran E (1918) Hypophysenschädigung durch schädelbasisfraktur. Dtsch. Med. Wochenschr. 44:1261

    Google Scholar 

  34. Giuliano S, Talarico S, Bruno L, Nicoletti FB, Ceccotti C, Belfiore A (2017) Growth hormone deficiency and hypopituitarism in adults after complicated mild traumatic brain injury. Endocrine 58:115–123

    Article  CAS  PubMed  Google Scholar 

  35. Kelestimur F, Tanriverdi F, Atmaca H, Unluhizarci K, Selcuklu A, Casanueva FF (2004) Boxing as a sport activity associated with isolated GH deficiency. J Endocrinol Invest 27Rc:28–32

    Article  Google Scholar 

  36. Tanriverdi F, Unluhizarci K, Coksevim B, Selcuklu A, Casanueva FF, Kelestimur F (2007) Kickboxing sport as a new cause of traumatic brain injury- mediated hypopituitarism. Clin Endocrinol 66:360–366

    Article  Google Scholar 

  37. Tanriverdi F, Unluhizarci K, Kocyigit I, Tuna IS, Karaca Z, Durak AC, Selcuklu A, Casanueva FF, Kelestimur F (2008) Brief communication: pituitary volume and function in competing and retired male boxers. Ann Intern Med 148:827–831

    Article  PubMed  Google Scholar 

  38. Wilkinson CW, Pagulayan KF, Petrie EC, Mayer CL, Colasurdo EA, Shofer JB, Hart KL, Hoff D, Tarabochia MA, Peskind ER (2012) High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front Neurol 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baxter D, Sharp DJ, Feeney C, Papadopoulou D, Ham TE, Jilka S, Hellyer PJ, Patel MC, Bennett AN, Mistlin A, McGilloway E, Midwinter M, Goldstone AP (2013) Pituitary dysfunction after blast traumatic brain injury: the UK BIOSAP study. Ann Neurol 74:527–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ioachimescu AG, Hampstead BM, Moore A, Burgess E, Phillips LS (2015) Growth hormone deficiency after mild combat-related traumatic brain injury. Pituitary 8:535–541

    Article  CAS  Google Scholar 

  41. Abadi MR, Ghodsi M, Merazin M, Roozbeh H (2011) Pituitary function impairment after moderate traumatic brain injury. Acta Med Iran. 49:438–441

    PubMed  Google Scholar 

  42. Hannon MJ, Crowley RK, Behan LA, O’Sullivan EP, O’Brien MM, Sherlock M, Rawluk D, O’Dwyer R, Tormey W, Thompson CJ (2013) Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J Clin Endocrinol Metab 98:3229–3237

    Article  CAS  PubMed  Google Scholar 

  43. Kontogeorgos G, Stefaneanu L, Kovacs K, Horvath E (2012) Hypophysis. In: Mai JK, Paxinos G (eds) The human nervous system. Academic Press, London, pp 584–593

    Chapter  Google Scholar 

  44. Xuereb GP, Prichard MM, Daniel PM (1954) The arterial supply and venous drainage of the human hypophysis cerebri. Q. J. Exp. Physiol. Cogn. Med. Sci. 39:199–217

    CAS  PubMed  Google Scholar 

  45. Kelly DF, Gonzalo IT, Cohan P, Berman N, Swerdloff R, Wang C (2000) Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J Neurosurg 93:743–752

    Article  CAS  PubMed  Google Scholar 

  46. Hohl A, Ronsoni MF, Debona R, Ben R, Schwarzbold ML, Diaz AP, de Oliveira Rodrigues, Thais ME, Linhares MN, Latini A, Prediger RD, Dal Pizzol F, Walz R (2014) Role of hormonal levels on hospital mortality for male patients with severe traumatic brain injury. Brain Inj 28:1262–1269

    Article  PubMed  Google Scholar 

  47. Zheng P, He B, Tong W (2014) Dynamic pituitary hormones change after traumatic brain injury. Neurol. India. 62:280–284

    Article  PubMed  Google Scholar 

  48. Salehi F, Kovacs K, Scheithauer BW, Pfeifer EA, Cusimano M (2007) Histologic study of the human pituitary gland in acute traumatic brain injury. Brain Inj 21:651–656

    Article  PubMed  Google Scholar 

  49. Daniel PM, Prichard MML, Schurr PH (1958) Extent of the infarct in the anterior lobe of the human pituitary gland after stalk section. Lancet 24:1101–1103

    Article  Google Scholar 

  50. Daniel PM, Prichard MM, Treip CS (1959) Traumatic infarction of the anterior lobe of the pituitary gland. Lancet 2:927–931

    Article  CAS  PubMed  Google Scholar 

  51. Daniel PM, Treip CS (1961) The pathology of the pituitary gland in head injury. In: Gardiner-Hill H (ed) Modern Trends in Endocrinology. Hoeber, New York, pp 55–68

    Google Scholar 

  52. Ceballos R (1966) Pituitary changes in head trauma (analysis of 102 consecutive cases of head injury). Ala J Med Sci 3:185–198

    CAS  PubMed  Google Scholar 

  53. Sheehan HL (1937) Post-partum necrosis of the anterior pituitary. J Pathol Bacteriol 45:189–214

    Article  CAS  Google Scholar 

  54. Wolman L (1956) Pituitary necrosis in raised intracranial pressure. J Pathol Bacteriol 72:575–586

    Article  Google Scholar 

  55. Atkins H, Falconer MA, Hayward JL, MacLean KS, Schurr PH (1966) The timing of adrenalectomy and of hypophysectomy in the treatment of advanced breast cancer. Lancet 16:827–830

    Article  Google Scholar 

  56. Adams JH, Daniel PM, Prichard MML (1966) Transection of the pituitary stalk in man: anatomical changes in the pituitary glands of 21 patients. J Neurol Neurosurg Psychiatr 29:545–555

    Article  Google Scholar 

  57. Lopez BS, Pernicone PJ, Scheithauer BW, Horvath E, Kovacs K (2012) Pituitary and sellar region. In: Mills SE (ed) Histology for pathologists. LWW, New York, pp 343–372

    Google Scholar 

  58. Molaie AM, Maguire J (2018) Neuroendocrine abnormalities following traumatic brain injury: an important contributor to neuropsychiatric sequelae. Front Endocrinol (Lausanne) 25:9–176

    Google Scholar 

  59. Dusick JR, Wang C, Cohan P, Swerdloff R, Kelly DF (2012) Pathophysiology of hypopituitarism in the setting of brain injury. Pituitary 15:2–9

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mescher AL (2017) Endocrine glands. Junqueira’s basic histology: Text & Atlas, vol. 13. McGraw-Hill, New York, NY. http://accessmedicine.mhmedical.com.ezproxy.library.tufts.edu/content.aspx?bookid=574&sectionid=42524606. Accessed 20 March, 2017

  61. Asa S, Kovacs K, Melmed S (1995) The hypothalamic-pituitary axis. In: Melmed S (ed) The pituitary. Blackwell Science Inc, Cambridge, pp 3–44

  62. Schneider HJ, Samann PG, Schneider M et al (2007) Pituitary imaging abnormalities in patients with and without hypopituitarism after traumatic brain injury. J Endocrinol Invest 30:RC9–RC12

    Article  CAS  PubMed  Google Scholar 

  63. Maiya B, Newcombe V, Nortje J, Bradley P, Bernard F, Chatfield D, Outtrim J, Hutchinson P, Matta B, Antoun N, Menon D (2008) Magnetic resonance imaging changes in the pituitary gland following acute traumatic brain injury. Intensive Care Med 34:468–475

    Article  PubMed  Google Scholar 

  64. Taylor AN, Rahman SU, Sanders NC, Tio DL, Prolo P, Sutton RL (2008) Injury severity differentially affects short- and long-term neuroendocrine outcomes of traumatic brain injury. J Neurotrauma 25:311–323

    Article  PubMed  Google Scholar 

  65. Taylor AN, Rahman SU, Tio DL, Sanders MJ, Bando JK, Truong AH, Prolo P (2006) Lasting neuroendocrine-immune effects of traumatic brain injury in rats. J Neurotrauma 23:1802–1813

    Article  PubMed  Google Scholar 

  66. Taylor AN, Tio DL, Sutton RL (2013) Restoration of neuroendocrine stress response by glucocorticoid receptor or GABA(A) receptor antagonists after experimental traumatic brain injury. J Neurotrauma 30:1250–1256

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bistritzer T, Theodor R, Inbar D, Cohen BE, Sack J (1981) Anterior hypopituitarism due to fracture of the sella turcica. Am J Dis Child 135:966–968

    CAS  PubMed  Google Scholar 

  68. Asa SL, Kovacs K, Bilbao JM (1983) The pars tuberalis of the human pituitary. A histologic, immunohistochemical, ultrastructural and immunoelectron microscopic analysis. Virchows Arch Pathol Anat Histopathol 399:49–59

    Article  CAS  Google Scholar 

  69. Larkin S, Ansorge O (2000) Development and microscopic anatomy of the pituitary gland. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A (eds) Endotext [Internet]. MDText.com, Inc, South Dartmouth, MA

    Google Scholar 

  70. Tandon A, Suri A, Kasliwal MK, Mahapatra AK, Mehta VS, Garg A, Sarkar C, Dogra TD, Pandey RM (2009) Assessment of endocrine abnormalities in severe traumatic brain injury: a prospective study. Acta Neurochir (Wien). 151:1411–1417

    Article  PubMed  Google Scholar 

  71. Barton RN, Atoner HB, Watson SM (1987) Relationship among plasma cortisol, adrenocorticotrophin, and severity of injury in recently injured patients. J Trauma 27:384–392

    Article  CAS  PubMed  Google Scholar 

  72. Tanriverdi F, Schneider HJ, Aimaretti G, Masel BE, Casanueva FF, Kelestimur F (2015) Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr Rev 36:305–342

    Article  CAS  PubMed  Google Scholar 

  73. Agha A, Rogers B, Mylotte D, Tormey W, Phillips J, Thompson CJ (2004) Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol (Oxf) 60:584–591

    Article  CAS  Google Scholar 

  74. Chioléro R, Lemarchand T, Schutz Y, de Tribolet N, Felber JP, Freeman J, Jéquier E (1988) Plasma pituitary hormone levels in severe trauma with or without head injury. J Trauma 28:1368–1374

    Article  PubMed  Google Scholar 

  75. Hackl JM, Gottardis M, Wieser C, Rumpl E, Stadler C, Schwarz S, Monkayo R (1991) Endocrine abnormalities in severe traumatic brain injury–a cue to prognosis in severe craniocerebral trauma? Intensive Care Med 17:25–29

    Article  CAS  PubMed  Google Scholar 

  76. Simmons AN, Matthews SC (2012) Neural circuitry of PTSD with or without mild traumatic brain injury: a meta-analysis. Neuropharmacology 62:598–606

    Article  CAS  PubMed  Google Scholar 

  77. Tan H, Yang W, Wu C, Liu B, Lu H, Wang H, Yan H (2017) Assessment of the role of intracranial hypertension and stress on hippocampal cell apoptosis and hypothalamic-pituitary dysfunction after TBI. Sci Rep 7:3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guaraldi F, Grottoli S, Arvat E, Ghigo E (2015) Hypothalamic-pituitary autoimmunity and traumatic brain injury. J Clin Med 19:1025–1035

    Article  CAS  Google Scholar 

  79. Goudie RB, Pinkerton PH (1962) Anterior hypophysitis and Hashimoto’s disease in a young woman. J Pathol Bacteriol 83:584–585

    Article  CAS  PubMed  Google Scholar 

  80. Caturegli P, Lupi I, Landek-Salgado M, Kimura H, Rose NR (2008) Pituitary autoimmunity: 30 years later. Autoimm Rev 7:631–637

    Article  CAS  Google Scholar 

  81. Caturegli P (2007) Autoimmune hypophysitis: an underestimated disease in search of its autoantigen(s). J Clin Endocrinol Metab 92:2038–2040

    Article  CAS  PubMed  Google Scholar 

  82. De Bellis A, Sinisi AA, Pane E, Dello Iacovo A, Bellastella G, Di Scala G, Falorni A, Giavoli C, Gasco V, Giordano R, Ambrosio MR, Colao A, Bizzarro A, Bellastella A (2012) Involvement of hypothalamus autoimmunity in patients with autoimmune hypopituitarism: Role of antibodies to hypothalamic cells. J Clin Endocrinol Metab 97:3684–3690

    Article  CAS  PubMed  Google Scholar 

  83. Laskowitz DT, Thekdi AD, Thekdi SD, Han SK, Myers JK, Pizzo SV, Bennett ER (2001) Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp Neurol 167:74–85

    Article  CAS  PubMed  Google Scholar 

  84. Kasturi BS, Stein DG (2009) Traumatic brain injury causes long-term reduction in serum growth hormone and persistent astrocytosis in the cortico-hypothalamo-pituitary axis of adult male rats. J Neurotrauma 26:1315–1324

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tanriverdi F, De Bellis A, Battaglia M, Bellastella G, Bizzarro A, Sinisi AA, Bellastella A, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2010) Investigation of antihypothalamus and antipituitary antibodies in amateur boxers: Is chronic repetitive head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol 162:861–867

    Article  CAS  PubMed  Google Scholar 

  86. Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–222

    Article  CAS  PubMed  Google Scholar 

  87. Kornblum RN, Fisher RS (1969) Pituitary lesions in craniocerebral injuries. Arch Pathol 88:242–248

    CAS  PubMed  Google Scholar 

  88. De Marinis L, Bonadonna S, Bianchi A, Maira G, Giustina A (2005) Primary empty sella. J Clin Endocrinol Metab 90:5471–5477

    Article  CAS  PubMed  Google Scholar 

  89. Ozdemir D, Baykara B, Aksu I, Kiray M, Sisman AR, Cetin F, Dayi A, Gurpinar T, Uysal N, Arda MN (2012) Relationship between circulating IGF-1 levels and traumatic brain injury-induced hippo-campal damage and cognitive dysfunction in immature rats. Neurosci Lett 507:84–89

    Article  CAS  PubMed  Google Scholar 

  90. Osterstock G, El Yandouzi T, Romanò N, Carmignac D, Langlet F, Coutry N, Guillou A, Schaeffer M, Chauvet N, Vanacker C, Galibert E, Dehouck B, Robinson IC, Prévot V, Mollard P, Plesnila N, Méry PF (2014) Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice. Endocrinology 155:1887–1898

    Article  CAS  PubMed  Google Scholar 

  91. Smith DH, Hicks R, Povlishock JT (2013) Therapy development for diffuse axonal injury. J Neurotrauma 30:307–323

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mullier A, Bouret SG, Prevot V, Dehouck B (2010) Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J Comp Neurol 518:943–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112:1603–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Graham DI, Gennarelli TA, McIntosh TK (2002) Trauma. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 7th edn. Arnold, London, pp 823–898

    Google Scholar 

  95. Bigler ED (2015) Neuropathology of mild traumatic brain injury: correlation to neurocognitive and neurobehavioral findings (Chapter 31). In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  96. Stahel PF, Morganti-Kossmann MC, Kossmann T (1998) The role of the complement system in traumatic brain injury. Brain Res Brain Res Rev 27:243–256

    Article  CAS  PubMed  Google Scholar 

  97. Benson RR, Gattu R, Sewick B, Kou Z, Zakariah N, Cavanaugh JM, Haacke EM (2012) Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation 31:261–279

    PubMed  Google Scholar 

  98. Lannsjö M, Raininko R, Bustamante M, von Seth C, Borg J (2013) Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination. J Rehabil Med 45:721–728

    Article  PubMed  Google Scholar 

  99. MacKenzie JD, Siddiqi F, Babb JS, Bagley LJ, Mannon LJ, Sinson GP, Grossman RI (2002) Brain atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative analysis. AJNR Am J Neuroradiol 23:1509–1515

    PubMed  Google Scholar 

  100. Ross DE, Castelvecchi C, Ochs AL (2013) Brain MRI volumetry in a single patient with mild traumatic brain injury. Brain Inj 27:634–636

    Article  PubMed  Google Scholar 

  101. Zhou Y, Kierans A, Kenul D, Ge Y, Rath J, Reaume J, Grossman RI, Lui YW (2013) Mild traumatic brain injury: Longitudinal regional brain volume changes. Radiology 267:880–890

    Article  PubMed  PubMed Central  Google Scholar 

  102. Biasca N, Maxwell WL (2007) Minor traumatic brain injury in sports: a review in order to prevent neurological sequelae. Prog Brain Res 161:263–291

    Article  PubMed  Google Scholar 

  103. Maxwell WL (2013) Damage to myelin and oligodendrocytes: A role in chronic outcomes following traumatic brain injury? Brain Sci 3:1374–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mckee AC, Abdolmohammadi B (2018) Stein TD The neuropathology of chronic traumatic encephalopathy. Handb Clin Neurol 158:297–307

    Article  PubMed  Google Scholar 

  105. Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D (2004) Peripheral markers of blood-brain barrier damage. Clin Chim Acta 342:1–12

    Article  CAS  PubMed  Google Scholar 

  106. Hay JR, Johnson VE, Young AM, Smith DH, Stewart W (2015) Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol 74:1147–1157

    CAS  PubMed  Google Scholar 

  107. Cherry JD, Tripodis Y, Alvarez VE, Huber B, Kiernan PT, Daneshvar DH, Mez J, Montenigro PH, Solomon TM, Alosco ML, Stern RA, McKee AC, Stein TD (2016) Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol Commun 4:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cherry JD, Tripodis Y, Alvarez VE, Huber B, Kiernan PT, Daneshvar DH, Mez J, Montenigro PH, Solomon TM, Alosco ML, Stern RA, McKee AC, Stein TD (2017) CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer’s disease. PLoS ONE 12:e0185541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kanaan NM, Cox K, Alvarez VE, Stein TD, Poncil S, McKee AC (2016) Characterization of early pathological tau conformations and phosphorylation in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 75:19–34

    Article  CAS  PubMed  Google Scholar 

  110. Holleran L, Kim JH, Gangolli M, Stein T, Alvarez V, McKee A, Brody DL (2017) Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy. Acta Neuropathol 133:367–380

    Article  PubMed  Google Scholar 

  111. McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC, Kowall NW, Perl DP, Hedley-Whyte ET, Price B, Sullivan C, Morin P, Lee HS, Kubilus CA, Daneshvar DH, Wulff M, Budson AE (2010) TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 69:918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, Lee HS, Wojtowicz SM, Hall G, Baugh CM, Riley DO, Kubilus CA, Cormier KA, Jacobs MA, Martin BR, Abraham CR, Ikezu T, Reichard RR, Wolozin BL, Budson AE, Goldstein LE, Kowall NW, Cantu RC (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64

    Article  PubMed  Google Scholar 

  113. Stein TD, Montenigro PH, Alvarez VE, Xia W, Crary JF, Tripodis Y, Daneshvar DH, Mez J, Solomon T, Meng G, Kubilus CA, Cormier KA, Meng S, Babcock K, Kiernan P, Murphy L, Nowinski CJ, Martin B, Dixon D, Stern RA, Cantu RC, Kowall NW, McKee AC (2015) Beta amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol 130:21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Authors are grateful to the Jarislowsky and Lloyd Carr-Harris Foundations for their support. For consideration of publication in: Traumatic Brain Injury, Pituitary: Special issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Sav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sav, A., Rotondo, F., Syro, L.V. et al. Pituitary pathology in traumatic brain injury: a review. Pituitary 22, 201–211 (2019). https://doi.org/10.1007/s11102-019-00958-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-019-00958-8

Keywords

Navigation