Skip to main content
Log in

Posterior pituitary dysfunction following traumatic brain injury: review

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Neurohypophysial dysfunction is common in the first days following traumatic brain injury (TBI), manifesting as dysnatremia in approximately 1 in 4 patients. Both hyponatremia and hypernatremia can impair recovery from TBI and in the case of hypernatremia, there is a significant association with excess mortality. Hyponatremia secondary to syndrome of inappropriate antidiuretic hormone secretion (SIAD) is the commonest electrolyte disturbance following TBI. Acute adrenocorticotropic hormone (ACTH)/cortisol deficiency occurs in 10–15% of TBI patients and can present with a biochemical picture identical to SIAD. For this reason, exclusion of glucocorticoid deficiency is of particular importance in post-TBI SIAD. Cerebral salt wasting is a rare cause of hyponatremia following TBI. Hyponatremia predisposes to seizures, reduced consciousness, and prolonged hospital stay. Diabetes insipidus (DI) occurs in 20% of cases following TBI; where diminished consciousness is present, appropriate fluid replacement of renal water losses is occasionally inadequate, leading to hypernatremia. Hypernatremia is strongly predictive of mortality following TBI. Most cases of DI are transient, but persistent DI is also predictive of mortality, irrespective of plasma sodium concentration. Persistent DI may herald rising intracranial pressure due to coning. True adipsic DI is rare following TBI, but patients are vulnerable to severe hypernatremic dehydration, exacerbation of neurologic deficits and hypothalamic complications, therefore clinicians should be aware of this possible variant of DI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hiatt HH, Lowis S (1957) Diabetes insipidus following head injury. AMA Arch Intern Med 100(1):143–146

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz WB, Bennett W, Curelop S et al (1957) A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med 23(4):529–542

    Article  CAS  PubMed  Google Scholar 

  3. Carter NW, Rector FC Jr, Seldin DW (1961) Hyponatremia in cerebral disease resulting from the inappropriate secretion of antidiuretic hormone. N Engl J Med 264:67–72. https://doi.org/10.1056/NEJM196101122640203

    Article  CAS  PubMed  Google Scholar 

  4. Hannon MJ, Finucane FM, Sherlock M et al (2012) Disorders of Water Homeostasis in Neurosurgical Patients. J Clin Endocrinol Metab 97(5):1423–1433. https://doi.org/10.1210/jc.2011-3201

    Article  CAS  PubMed  Google Scholar 

  5. Cuesta M, Hannon MJ, Thompson CJ (2016) Diagnosis and treatment of hyponatraemia in neurosurgical patients. Endocrinol Nutr 63(5):230–238. https://doi.org/10.1016/j.endonu.2015.12.007

    Article  PubMed  Google Scholar 

  6. Hannon MJ, Crowley RK, Behan LA et al (2013) Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J Clin Endocrinol Metab 98(8):3229–3237. https://doi.org/10.1210/jc.2013-1555

    Article  CAS  PubMed  Google Scholar 

  7. Vedantam A, Robertson CS, Gopinath SP (2017) Morbidity and mortality associated with hypernatremia in patients with severe traumatic brain injury. Neurosurg Focus 43(5):E2. https://doi.org/10.3171/2017.7.FOCUS17418

    Article  PubMed  Google Scholar 

  8. Hoffman H, Jalal MS, Chin LS (2018) Effect of hypernatremia on outcomes after severe traumatic brain injury: a nationwide inpatient sample analysis. Word Neurosurg 118:e880–e886. https://doi.org/10.1016/j.wneu.2018.07.089

    Article  Google Scholar 

  9. Sherlock M, O’Sullivan E, Agha A et al (2009) Incidence and pathophysiology of severe hyponatraemia in neurosurgical patients. Postgrad Med J 85(1002):171–175. https://doi.org/10.1136/pgmj.2008.072819

    Article  CAS  PubMed  Google Scholar 

  10. Agha A, Thornton E, O’Kelly P et al (2004) Posterior pituitary dysfunction after traumatic brain injury. J Clin Endocrinol Metab 89:5987–5992. https://doi.org/10.1210/jc.2004-1058

    Article  CAS  PubMed  Google Scholar 

  11. Capatina C, Paluzzi A, Mitchell R et al (2015) Diabetes insipidus after traumatic brain injury. J Clin Med 4(7):1448–1462. https://doi.org/10.3390/jcm4071448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kleindienst A, Hannon MJ, Buchfelder M et al (2016) Hyponatremia in neurotrauma: the role of vasopressin. J Neurotrauma 33(7):615–624. https://doi.org/10.1089/neu.2015.3981

    Article  PubMed  Google Scholar 

  13. Agha A, Rogers B, Mylotte D et al (2004) Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol (Oxf) 60:584–591. https://doi.org/10.1111/j.1365-2265.2004.02023.x

    Article  CAS  Google Scholar 

  14. Tanriverdi F, Senyurek H, Unluhizarci K et al (2006) High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab 91:2105–2111. https://doi.org/10.1210/jc.2005-2476

    Article  CAS  PubMed  Google Scholar 

  15. Krahulik D, Zapletalova J, Frysak Z et al (2010) Dysfunction of hypothalamic-hypophysial axis after traumatic brain injury in adults. J Neurosurg 113:581–584. https://doi.org/10.3171/2009.10.JNS09930

    Article  PubMed  Google Scholar 

  16. Bartter FC, Schwartz WB (1967) The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 42:790–806

    Article  CAS  PubMed  Google Scholar 

  17. Verbalis JG (1989) Hyponatraemia. Baillieres Clin Endocrinol Metab 3(2):499–530

    Article  CAS  PubMed  Google Scholar 

  18. Agha A, Rogers B, Sherlock M et al (2004) Anterior pituitary dysfunction in survivors of traumatic brain injury. J Clin Endocrinol Metab 89(10):4929–4936. https://doi.org/10.1210/jc.2004-0511

    Article  CAS  PubMed  Google Scholar 

  19. Agha A, Sherlock M, Thompson CJ (2005) Post-traumatic hyponatraemia due to acute hypopituitarism. QJM 98(6):463–464. https://doi.org/10.1093/qjmed/hci075

    Article  CAS  PubMed  Google Scholar 

  20. Bensalah M, Donaldson M, Aribi Y et al (2018) Cortisol evaluation during the acute phase of traumatic brain injury-A prospective study. Clin Endocrol (Oxf) 88(5):627–636. https://doi.org/10.1111/cen.13562

    Article  CAS  Google Scholar 

  21. Agha A, Sherlock M, Phillips J et al (2005) The natural history of post-traumatic neurohypophysial dysfunction. Eur J Endocrinol 152:371–377. https://doi.org/10.1530/eje.1.01861

    Article  CAS  PubMed  Google Scholar 

  22. Agha A, Phillips J, O’Kelly P et al (2005) The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med 118(12):1416. https://doi.org/10.1016/j.amjmed.2005.02.042

    Article  PubMed  Google Scholar 

  23. Peters JP, Welt LG, Sims EA et al (1950) A salt-wasting syndrome associated with cerebral disease. Trans Assoc Am Physicians 63:57–64

    CAS  PubMed  Google Scholar 

  24. Yee AH, Burns JD, Wijdicks EF (2010) Cerebral salt wasting: pathophysiology, diagnosis, and treatment. Neurosurg Clin N Am 21(2):339–352. https://doi.org/10.1016/j.nec.2009.10.011

    Article  PubMed  Google Scholar 

  25. Leonard J, Garrett RE, Salottolo K et al (2015) Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med 23:98. https://doi.org/10.1186/s13049-015-0180-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verbalis J, Goldsmith SR, Greenberg A et al (2013) Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 126(10 Suppl 1):S1–S42. https://doi.org/10.1016/j.amjmed.2013.07.006

    Article  PubMed  Google Scholar 

  27. Bitew S, Imriano L, Miyawaki N et al (2009) More on salt wasting without cerebral disease: a response to saline infusion. Clin J Am Soc Nephrol 4(2):309–315. https://doi.org/10.2215/CJN.02740608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Revilla-Pacheco FR, Herrada-Pineda T, Loyo-Varela M et al (2005) Cerebral salt wasting syndrome in patients with aneurysmal subarachnoid hemorrhage. Neurol Res 27(4):418–422. https://doi.org/10.1179/016164105X17152

    Article  PubMed  Google Scholar 

  29. Cerdà-Esteve M, Cuadrado-Godia E, Chillaron JJ et al (2008) Cerebral salt wasting syndrome: review. Eur J Intern Med 19(4):249–254. https://doi.org/10.1016/j.ejim.2007.06.019

    Article  PubMed  Google Scholar 

  30. Ke C, Poon WS, Ng HK et al (2002) Impact of experimental acute hyponatremia on severe traumatic brain injury in rats: influences on injuries, permeability of blood-brain barrier, ultrastructural features, and aquaporin-4 expression. Exp Neurol 178(2):194–206

    Article  CAS  PubMed  Google Scholar 

  31. Sterns RH (2018) Treatment of Severe Hyponatremia. Clin J Am Soc Nephrol 13(4):641–649. https://doi.org/10.2215/CJN.10440917

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spasovski G, Vanholder R, Allolio B et al (2014) Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 170(3):G1–G47. https://doi.org/10.1530/EJE-13-1020

    Article  CAS  PubMed  Google Scholar 

  33. Greenberg A, Verbalis JG, Amin AN et al (2015) Current treatment practice and outcomes. Report of the hyponatremia registry. Kidney Int 88(1):167–177. https://doi.org/10.1038/ki.2015.4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rondon-Berrios H, Tandukar S, Mor MK et al (2018) Urea for the treatment of hyponatremia. Clin J Am Soc Nephrol Sep. https://doi.org/10.2215/CJN.04020318.

    Article  Google Scholar 

  35. Pierrakos C, Taccone FS, Decaux G et al (2012) Urea for treatment of acute SIADH in patients with subarachnoid hemorrhage: a single-center experience. Ann Intensive Care 2:13. https://doi.org/10.1186/2110-5820-2-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagler EV, Haller MC, Van Biesen W et al (2018) Interventions for chronic non-hypovolaemic hypotonic hyponatraemia. Cochrane Database Syst Rev 6:CD010965. https://doi.org/10.1002/14651858.CD010965.pub2

    Article  PubMed  Google Scholar 

  37. Sterns RH, Silver SM, Hix JK (2015) Urea for hyponatremia? Kidney Int 87(2):268–270. https://doi.org/10.1038/ki.2014.320

    Article  PubMed  Google Scholar 

  38. Onuigbo MAC, Agbasi N (2016) Severe symptomatic acute hyponatremia in traumatic brain injury responded very rapidly to a single 15 mg dose of oral tolvaptan; a Mayo Clinic Health System hospital experience—need for caution with tolvaptan in younger patients with preserved renal function. J Renal Inj Prev 6(1):26–29. https://doi.org/10.15171/jrip.2017.05

    Article  PubMed  PubMed Central  Google Scholar 

  39. Benvenga S, CampennI A, Ruggeri RM et al (2000) Hypopituitarism secondary to head trauma. J Clin Endocrinol Metab 85(4):1353–1361. https://doi.org/10.1210/jcem.85.4.6506

    Article  CAS  PubMed  Google Scholar 

  40. Boughey JC, Yost MJ, Bynoe RP (2004) Diabetes insipidus in the head-injured patient. Am Surg 70(6):500–503

    PubMed  Google Scholar 

  41. Hadjizacharia P, Beale EO, Inaba K et al (2008) Acute diabetes insipidus in severe head injury: a prospective study. J Am Coll Surg 207(4):477–484. https://doi.org/10.1016/j.jamcollsurg.2008.04.017

    Article  PubMed  Google Scholar 

  42. Karali V, Massa E, Vassiliadou G et al (2008) Evaluation of development of diabetes insipidus in the early phase following traumatic brain injury in critically ill patients. Crit Care 12(Suppl 2): P130. https://doi.org/10.1186/cc6351

    Article  PubMed Central  Google Scholar 

  43. Seckl J, Dunger D (1989) Postoperative diabetes insipidus. BMJ 298(6665):2–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baylis PH, Thompson CJ (1988) Osmoregulation of vasopressin secretion and thirst in health and disease. Clin Endocrinol (Oxf) 29(5):549–576

    Article  CAS  Google Scholar 

  45. Ranasinghe AM, Bonser RS (2011) Endocrine changes in brain death and transplantation. Best Pract Res Clin Endocrinol Metab 25(5):799–812. https://doi.org/10.1016/j.beem.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  46. Ghigo E, Masel B, Aimaretti G et al (2005) Consensus guidelines on screening for hypopituitarism following traumatic brain injury. Brain Inj 19(9):711–724. https://doi.org/10.1080/02699050400025315

    Article  CAS  PubMed  Google Scholar 

  47. Han MJ, Kim DH, Kim YH et al (2015) A case of osmotic demyelination presenting with severe hypernatremia. Electrolyte Blood Press 13(1):30–36. https://doi.org/10.3174/ajnr.A3392

    Article  PubMed  PubMed Central  Google Scholar 

  48. Naik KR, Saroja AO (2010) Seasonal postpartum hypernatremic encephalopathy with osmotic extrapontine myelinolysis and rhabdomyolysis. J Neurol Sci 291(1–2):5–11. https://doi.org/10.1016/j.jns.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  49. Crowley RK, Sherlock M, Agha A et al (2007) Clinical insights into adipsic diabetes insipidus: a large case series. Clin Endocrinol (Oxf) 66:475–482. https://doi.org/10.1111/j.1365-2265.2007.02754.x

    Article  CAS  Google Scholar 

  50. Smith D, McKenna K, Moore K et al (2002) Baroregulation of vasopressin release in adipsic diabetes insipidus. J Clin Endocrinol Metab 87:4564–4568. https://doi.org/10.1210/jc.2002-020090

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana Maria Tudor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This paper does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudor, R.M., Thompson, C.J. Posterior pituitary dysfunction following traumatic brain injury: review. Pituitary 22, 296–304 (2019). https://doi.org/10.1007/s11102-018-0917-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-018-0917-z

Keywords

Navigation