Skip to main content

Advertisement

Log in

Adamantinomatous craniopharyngiomas express tumor stem cell markers in cells with activated Wnt signaling: further evidence for the existence of a tumor stem cell niche?

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Introduction

Early disease onset, clinical manifestation, histomorphology, and increased tendency to relapse distinguish the adamantinomatous craniopharyngioma (adaCP) from the more favorable papillary variant (papCP). A molecular hallmark of adaCP is the activated Wnt signaling pathway indicated by nuclear β-catenin accumulation in a subset of tumor cells. A mouse model recently illustrated that these cells are the driving force in tumorigenesis of adaCP. This observation and the peculiar growth pattern points to the existence of a specific tumor stem cell (TSC) population in human CP.

Materials and Methods

To prove this hypothesis, the TSC markers CD133 (Prominin1) and CD44 were examined in papCP (n = 8) and adaCP (n = 25) on mRNA level using quantitative real time PCR of total tumor RNA. Furthermore, we investigated protein expression performing immunohistochemical analyses of formalin-fixed paraffin embedded tumor samples.

Results

PapCP revealed a homogenous CD44 expression pattern predominantly at the cell membrane, whereas CD133 labeling was hardly detectable. In adaCP, on the other hand all markers were consistently and predominantly co-expressed in nuclear β-catenin accumulating cell clusters, which was confirmed by double immunofluorescence staining. Overall expression of CD44 was significantly decreased in adaCP versus papCP, whereas CD133 showed significantly higher protein and mRNA levels in adaCP.

Conclusions

Our results indicate tumor stem cell-like characteristics of β-catenin accumulating cell clusters in adaCP, which may represent a tumor stem cell niche and might contribute to tumor recurrence. The potential impact of these special cell groups in regard to future CP management, including postoperative follow-up and additional treatment remains to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karavitaki N, Cudlip S, Adams CB, Wass JA (2006) Craniopharyngiomas. Endocr Rev 27(4):371–397. doi:10.1210/er.2006-0002

    Article  PubMed  Google Scholar 

  2. Clark AJ, Cage TA, Aranda D, Parsa AT, Auguste KI, Gupta N (2012) Treatment-related morbidity and the management of pediatric craniopharyngioma: a systematic review. J Neurosurg Pediatr 10(4):293–301. doi:10.3171/2012.7.PEDS11436

    Article  PubMed  Google Scholar 

  3. Hofmann BM, Hollig A, Strauss C, Buslei R, Buchfelder M, Fahlbusch R (2012) Results after treatment of craniopharyngiomas: further experiences with 73 patients since 1997. J Neurosurg 116(2):373–384. doi:10.3171/2011.6.JNS081451

    Article  PubMed  Google Scholar 

  4. Clark AJ, Cage TA, Aranda D, Parsa AT, Sun PP, Auguste KI, Gupta N (2013) A systematic review of the results of surgery and radiotherapy on tumor control for pediatric craniopharyngioma. Child’s Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 29(2):231–238. doi:10.1007/s00381-012-1926-2

    Article  Google Scholar 

  5. Sato K, Oka H, Utsuki S, Kondo K, Kurata A, Fujii K (2006) Ciliated craniopharyngioma may arise from Rathke cleft cyst. Clin Neuropathol 25(1):25–28

    CAS  PubMed  Google Scholar 

  6. Karavitaki N, Brufani C, Warner JT, Adams CB, Richards P, Ansorge O, Shine B, Turner HE, Wass JA (2005) Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol 62(4):397–409. doi:10.1111/j.1365-2265.2005.02231.x

    Article  CAS  Google Scholar 

  7. Miller DC (1994) Pathology of craniopharyngiomas: clinical import of pathological findings. Pediatr Neurosurg 21(Suppl 1):11–17

    Article  PubMed  Google Scholar 

  8. Sartoretti-Schefer S, Wichmann W, Aguzzi A, Valavanis A (1997) MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. AJNR Am J Neuroradiol 18(1):77–87

    CAS  PubMed  Google Scholar 

  9. Andoniadou CL, Gaston-Massuet C, Reddy R, Schneider RP, Blasco MA, Le Tissier P, Jacques TS, Pevny LH, Dattani MT, Martinez-Barbera JP (2012) Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol 124(2):259–271. doi:10.1007/s00401-012-0957-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Buslei R, Holsken A, Hofmann B, Kreutzer J, Siebzehnrubl F, Hans V, Oppel F, Buchfelder M, Fahlbusch R, Blumcke I (2007) Nuclear beta-catenin accumulation associates with epithelial morphogenesis in craniopharyngiomas. Acta Neuropathol 113(5):585–590. doi:10.1007/s00401-006-0184-3

    Article  CAS  PubMed  Google Scholar 

  11. Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrubl F, Hahnen E, Kreutzer J, Fahlbusch R (2005) Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol (Berl) 109(6):589–597

    Article  CAS  Google Scholar 

  12. Hassanein AM, Glanz SM, Kessler HP, Eskin TA, Liu C (2003) Beta-Catenin is expressed aberrantly in tumors expressing shadow cells. Pilomatricoma, craniopharyngioma, and calcifying odontogenic cyst. Am J Clin Pathol 120(5):732–736

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann BM, Kreutzer J, Saeger W, Buchfelder M, Blumcke I, Fahlbusch R, Buslei R (2006) Nuclear beta-catenin accumulation as reliable marker for the differentiation between cystic craniopharyngiomas and rathke cleft cysts: a clinico-pathologic approach. Am J Surg Pathol 30(12):1595–1603

    Article  PubMed  Google Scholar 

  14. Holsken A, Buchfelder M, Fahlbusch R, Blumcke I, Buslei R (2010) Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol 119(5):631–639. doi:10.1007/s00401-010-0642-9

    Article  PubMed  Google Scholar 

  15. Holsken A, Kreutzer J, Hofmann BM, Hans V, Oppel F, Buchfelder M, Fahlbusch R, Blumcke I, Buslei R (2009) Target gene activation of the Wnt signaling pathway in nuclear beta-catenin accumulating cells of adamantinomatous craniopharyngiomas. Brain Pathol 19(3):357–364. doi:10.1111/j.1750-3639.2008.00180.x

    Article  PubMed  Google Scholar 

  16. Kato K, Nakatani Y, Kanno H, Inayama Y, Ijiri R, Nagahara N, Miyake T, Tanaka M, Ito Y, Aida N, Tachibana K, Sekido K, Tanaka Y (2004) Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J Pathol 203(3):814–821

    Article  CAS  PubMed  Google Scholar 

  17. Sekine S, Sato S, Takata T, Fukuda Y, Ishida T, Kishino M, Shibata T, Kanai Y, Hirohashi S (2003) Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol 163(5):1707–1712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, Sakamoto M, Hirohashi S (2002) Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 161(6):1997–2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115(Pt 21):3977–3978

    Article  CAS  PubMed  Google Scholar 

  20. Oikonomou E, Barreto DC, Soares B, De Marco L, Buchfelder M, Adams EF (2005) Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol 73(3):205–209

    Article  CAS  PubMed  Google Scholar 

  21. Gaston-Massuet C, Andoniadou CL, Signore M, Jayakody SA, Charolidi N, Kyeyune R, Vernay B, Jacques TS, Taketo MM, Le Tissier P, Dattani MT, Martinez-Barbera JP (2011) Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci USA 108(28):11482–11487. doi:10.1073/pnas.1101553108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Camper SA (2011) Beta-catenin stimulates pituitary stem cells to form aggressive tumors. Proc Natl Acad Sci USA 108(28):11303–11304. doi:10.1073/pnas.1108275108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15(4):338–344. doi:10.1038/ncb2717

    Article  CAS  PubMed  Google Scholar 

  24. Espada J, Calvo MB, Diaz-Prado S, Medina V (2009) Wnt signalling and cancer stem cells. Clin Transl Oncol: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 11(7):411–427

    Article  CAS  Google Scholar 

  25. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850. doi:10.1038/nature03319

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16(12):3153–3162. doi:10.1158/1078-0432.CCR-09-2943

    Article  CAS  PubMed  Google Scholar 

  27. Yao CJ, Lai GM, Yeh CT, Lai MT, Shih PH, Chao WJ, Whang-Peng J, Chuang SE, Lai TY (2013) Honokiol eliminates human oral cancer stem-like cells accompanied with suppression of Wnt/beta-catenin signaling and apoptosis induction. Evidence Based Complement Altern Med eCAM 2013:146136. doi:10.1155/2013/146136

    Google Scholar 

  28. Elsaba TM, Martinez-Pomares L, Robins AR, Crook S, Seth R, Jackson D, McCart A, Silver AR, Tomlinson IP, Ilyas M (2010) The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS ONE 5(5):e10714. doi:10.1371/journal.pone.0010714

    Article  PubMed Central  PubMed  Google Scholar 

  29. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8(7):545–554. doi:10.1038/nrc2419

    Article  CAS  PubMed  Google Scholar 

  30. Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, Alphonse G, Ardail D, Rodriguez-Lafrasse C, Magne N (2012) Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett 322(2):139–147. doi:10.1016/j.canlet.2012.03.024

    Article  CAS  PubMed  Google Scholar 

  31. Zoller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11(4):254–267. doi:10.1038/nrc3023

    Article  PubMed  Google Scholar 

  32. Jijiwa M, Demir H, Gupta S, Leung C, Joshi K, Orozco N, Huang T, Yildiz VO, Shibahara I, de Jesus JA, Yong WH, Mischel PS, Fernandez S, Kornblum HI, Nakano I (2011) CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS ONE 6(9):e24217. doi:10.1371/journal.pone.0024217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Perez A, Neskey DM, Wen J, Pereira L, Reategui EP, Goodwin WJ, Carraway KL, Franzmann EJ (2013) CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol 49(4):306–313. doi:10.1016/j.oraloncology.2012.11.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382(6592):638–642

    Article  CAS  PubMed  Google Scholar 

  35. Sekine S, Takata T, Shibata T, Mori M, Morishita Y, Noguchi M, Uchida T, Kanai Y, Hirohashi S (2004) Expression of enamel proteins and LEF1 in adamantinomatous craniopharyngioma: evidence for its odontogenic epithelial differentiation. Histopathology 45(6):573–579

    Article  CAS  PubMed  Google Scholar 

  36. Gires O (2011) Lessons from common markers of tumor-initiating cells in solid cancers. Cell Mol Life Sci 68(24):4009–4022. doi:10.1007/s00018-011-0772-9

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki SO, Iwaki T (1999) Non-isotopic in situ hybridization of CD44 transcript in formalin-fixed paraffin-embedded sections. Brain Res Brain Res Protoc 4(1):29–35

    Article  PubMed  Google Scholar 

  38. Qi S, Huang G, Pan J, Li J, Zhang X, Fang L, Liu B, Meng W, Zhang Y, Liu X (2010) Involvement of osteopontin as a core protein in craniopharyngioma calcification formation. J Neurooncol 98(1):21–30. doi:10.1007/s11060-009-0053-8

    Article  CAS  PubMed  Google Scholar 

  39. Rao G, Du L, Chen Q (2013) Osteopontin, a possible modulator of cancer stem cells and their malignant niche. Oncoimmunology 2(5):e24169. doi:10.4161/onci.24169

    Article  PubMed Central  PubMed  Google Scholar 

  40. Holsken A, Gebhardt M, Buchfelder M, Fahlbusch R, Blumcke I, Buslei R (2011) EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin Cancer Res 17(13):4367–4377. doi:10.1158/1078-0432.CCR-10-2811

    Article  PubMed  Google Scholar 

  41. Kim J, Jung J, Lee SJ, Lee JS, Park MJ (2012) Cancer stem-like cells persist in established cell lines through autocrine activation of EGFR signaling. Oncol Lett 3(3):607–612. doi:10.3892/ol.2011.531

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ma L, Zhang G, Miao XB, Deng XB, Wu Y, Liu Y, Jin ZR, Li XQ, Liu QZ, Sun DX, Testa JR, Yao KT, Xiao GH (2013) Cancer stem-like cell properties are regulated by EGFR/AKT/beta-catenin signaling and preferentially inhibited by gefitinib in nasopharyngeal carcinoma. FEBS J 280(9):2027–2041. doi:10.1111/febs.12226

    Article  CAS  PubMed  Google Scholar 

  43. Nautiyal J, Du J, Yu Y, Kanwar SS, Levi E, Majumdar AP (2012) EGFR regulation of colon cancer stem-like cells during aging and in response to the colonic carcinogen dimethylhydrazine. Am J Physiol Gastrointest Liver Physiol 302(7):G655–G663. doi:10.1152/ajpgi.00323.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, Hashida S, Maki Y, Ichihara E, Asano H, Tsukuda K, Takigawa N, Kiura K, Gazdar AF, Lam WL, Miyoshi S (2013) Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res 73(10):3051–3061. doi:10.1158/0008-5472.CAN-12-4136

    Article  CAS  PubMed  Google Scholar 

  45. Zhou FC, Kelley MR, Chiang YH, Young P (2000) Three to four-year-old nonpassaged EGF-responsive neural progenitor cells: proliferation, apoptosis, and DNA repair. Exp Neurol 164(1):200–208. doi:10.1006/exnr.2000.7425

    Article  CAS  PubMed  Google Scholar 

  46. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323. doi:10.1016/j.stem.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  47. Jung A, Brabletz T, Kirchner T (2006) The migrating cancer stem cells model: a conceptual explanation of malignant tumour progression. Ernst schering foundation symposium proceedings, no 5, pp 109–124

  48. Pajonk F, Vlashi E, McBride WH (2010) Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells 28(4):639–648. doi:10.1002/stem.318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Sun M, Zhou W, Zhang YY, Wang DL, Wu XL (2013) CD44 gastric cancer cells with stemness properties are chemoradioresistant and highly invasive. Oncol Lett 5(6):1793–1798. doi:10.3892/ol 2013.1272

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu XF, Xia YF, Li MZ, Wang HM, He YX, Zheng ML, Yang HL, Huang WL (2006) The effect of p21 antisense oligodeoxynucleotides on the radiosensitivity of nasopharyngeal carcinoma cells with normal p53 function. Cell Biol Int 30(3):283–287. doi:10.1016/j.cellbi.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  51. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104(2):618–623. doi:10.1073/pnas.0606599104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Garcia-Lavandeira M, Saez C, Diaz-Rodriguez E, Perez-Romero S, Senra A, Dieguez C, Japon MA, Alvarez CV (2012) Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors. J Clin Endocrinol Metab 97(1):E80–E87. doi:10.1210/jc.2011-2187

    Article  CAS  PubMed  Google Scholar 

  53. Burghaus S, Holsken A, Buchfelder M, Fahlbusch R, Riederer BM, Hans V, Blumcke I, Buslei R (2010) A tumor-specific cellular environment at the brain invasion border of adamantinomatous craniopharyngiomas. Virchows Arch Int J Pathol 456(3):287–300. doi:10.1007/s00428-009-0873-0

    Article  Google Scholar 

  54. Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13(4):433–445. doi:10.1016/j.stem.2013.07.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Tajana Jungbauer, Diana Maron and Birte Rings for conducting the immunohistochemical stainings. We thank Robyn Auer for proofreading the manuscript.

Ethical standards

A declaration of consent of each patient is available for all specimens for further scientific investigation, approved by the local ethics committee of the University Erlangen. Procedures were conducted in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annett Hölsken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hölsken, A., Stache, C., Schlaffer, S.M. et al. Adamantinomatous craniopharyngiomas express tumor stem cell markers in cells with activated Wnt signaling: further evidence for the existence of a tumor stem cell niche?. Pituitary 17, 546–556 (2014). https://doi.org/10.1007/s11102-013-0543-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-013-0543-8

Keywords

Navigation