Skip to main content

Advertisement

Log in

C-prenylated flavonoids with potential cytotoxic activity against solid tumor cell lines

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Natural products of plant origin or their semisynthetic derivatives acting as chemopreventive or chemotherapeutic agents for various types of cancer are under study as potential new anticancer drugs. Within the huge class of plant phenolic secondary metabolites, the subclass of prenylated flavonoids is quite rich in structural variety and pharmacological activity. One of their most prominent characteristics is their potential as anticancer agents. The aim of this review is to summarize the available data about the cytotoxicity of C-prenylated flavonoids on solid tumor cell lines as shown by in vitro assays. Prenylated flavonoids are divided into groups according to the prenyl substitution of the flavonoid skeleton. Within these flavonoid groups, attention is focused on flavones, flavonols, flavanones, dihydroflavonols, and isoflavonoids. This search is limited to compounds that do not contain heteroatoms other than oxygen, and is focused only on aglycones. Attempts to compare the bioassay results obtained from the search reveal complications caused by the use of different assay protocols, different ranges of concentration studied, different times the cell cultures were exposed to the compounds being assayed, and in some cases the lack of a proper positive control. In vivo assays of the anticancer activity of prenylated flavonoids on solid tumors were also reviewed. Despite the difficulties in comparing them, it is clear that the C-prenylated flavonoid class possesses significant bioactivity, suggesting a potential role for such compounds in anticancer drug discovery and development.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal G, Carcache PJB, Addo EM et al (2019) Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.01.004

  • Allsopp P, Possemiers S, Campbell D et al (2013) A comparison of the anticancer properties of isoxanthohumol and 8-prenylnaringenin using in vitro models of colon cancer. BioFactors 39:441–447

    Article  CAS  PubMed  Google Scholar 

  • Almeida JRGS, Barbosa-Filho JM, Cabral AGS et al (2005) Diploflavone, a new flavonoid from Diplotropis ferruginea Benth. (Fabaceae). J Braz Chem Soc 16:1454–1457

    Article  CAS  Google Scholar 

  • An HK, Kim KS, Lee JW et al (2014) Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells. PLoS ONE 9:e114607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Kunnumakara AB, Sundaram C et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade-Carrera B, Clares B, Noé V et al (2017) Cytotoxic evaluation of (2S)-5,7-dihydroxy-6-prenylflavanone derivatives loaded PLGA nanoparticles against MiaPaCa-2 cells. Molecules 22:E1553

    Article  CAS  PubMed  Google Scholar 

  • Anioł M, Świderska A, Stompor M et al (2012) Antiproliferative activity and synthesis of 8-prenylnaringenin derivatives by demethylation of 7-O- and 4´-O-substituted isoxanthohumols. Med Chem Res 21:4230–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai MA, Uchida K, Sadhu SK et al (2015) Hedgehog inhibitors from Artocarpus communis and Hyptis suaveolens. Bioorg Med Chem 23:4150–4154

    Article  CAS  PubMed  Google Scholar 

  • Arung ET, Shimizu K, Kondo R (2006) Inhibitory effect of isoprenoid-substituted flavonoids isolated from Artocarpus heterophyllus on melanin biosynthesis. Planta Med 72:847–850

    Article  CAS  PubMed  Google Scholar 

  • Arung ET, Shimizu K, Kondo R (2007) Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells. Chem Biodivers 4:2166–2171

    Article  CAS  PubMed  Google Scholar 

  • Arung ET, Shimizu K, Tanaka H et al (2010a) 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus. Fitoterapia 81:640–643

    Article  CAS  PubMed  Google Scholar 

  • Arung ET, Wicaksono BD, Handoko YA et al (2010b) Cytotoxic effect of artocarpin on T47D cells. J Nat Med 64:423–429

    Article  CAS  PubMed  Google Scholar 

  • Arung ET, Yoshikawa K, Shimizu K et al (2010c) Isoprenoid-substituted flavonoids from wood of Artocarpus heterophyllus on B16 melanoma cells: cytotoxicity and structural criteria. Fitoterapia 81:120–123

    Article  CAS  PubMed  Google Scholar 

  • Barron D, Ibrahim RK (1996) Isoprenylated flavonoids—a survey. Phytochemistry 43:921–982

    Article  CAS  Google Scholar 

  • Basmadjian C, Zhao Q, Bentouhami E et al (2014) Cancer wars: natural products strike back. Front Chem 2:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanquer-Rosselló MM, Oliver J, Valle A et al (2013) Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression. J Cell Biochem 114:2785–2794

    Article  CAS  PubMed  Google Scholar 

  • Blatt CTT, Chávez D, Chai H et al (2002) Cytotoxic flavonoids from the stem bark of Lonchocarpus aff. fluvialis. Phytother Res 16:320–325

    Article  CAS  PubMed  Google Scholar 

  • Boonyaketgoson S, Rukachaisirikul V, Phongpaichit S et al (2017) Cytotoxic arylbenzofuran and stilbene derivatives from the twigs of Artocarpus heterophyllus. Tetrahedron Lett 58:1585–1589

    Article  CAS  Google Scholar 

  • Botta B, Vitali A, Menendez P et al (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12:713–739

    Article  CAS  Google Scholar 

  • Bourjot M, Apel C, Martin MT et al (2010) Antiplasmodial, antitrypanosomal, and cytotoxic activities of prenylated flavonoids isolated from the stem bark of Artocarpus styracifolius. Planta Med 76:1600–1604

    Article  CAS  PubMed  Google Scholar 

  • Brezáni V, Šmejkal K, Hošek J et al (2018) Anti-inflammatory natural prenylated phenolic compounds-potential lead substances. Curr Med Chem 25:1094–1159

    Article  CAS  PubMed  Google Scholar 

  • Brunelli E, Pinton G, Bellini P et al (2009a) Flavonoid-induced autophagy in hormone sensitive breast cancer cells. Fitoterapia 80:327–332

    Article  CAS  PubMed  Google Scholar 

  • Brunelli E, Pinton G, Chianale F et al (2009b) 8-Prenylnaringenin inhibits epidermal growth factor-induced MCF-7 breast cancer cell proliferation by targeting phosphatidylinositol-3-OH kinase activity. J Steroid Biochem Mol Biol 113:163–170

    Article  CAS  PubMed  Google Scholar 

  • Bunel V, Ouedraogo M, Nguyen AT et al (2014) Methods applied to the in vitro primary toxicology testing of natural products: state of the art, strengths, and limits. Planta Med 80:1210–1226

    Article  CAS  PubMed  Google Scholar 

  • Busch C, Noor S, Leischner C et al (2015) Anti-proliferative activity of hop-derived prenylflavonoids against human cancer cell lines. Wien Med Wochenschr 165:258–261

    Article  PubMed  Google Scholar 

  • Çevik D, Yılmazgöz ŞB, Kan Y et al (2018) Bioactivity-guided isolation of cytotoxic secondary metabolites from the roots of Glycyrrhiza glabra and elucidation of their mechanisms of action. Ind Crops Prod 124:389–396

    Article  CAS  Google Scholar 

  • Cheenpracha S, Karalai C, Ponglimanont C et al (2009) Candenatenins A–F, phenolic compounds from the heartwood of Dalbergia candenatensis. J Nat Prod 72:1395–1398

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Wu CL, Shy HS et al (2003) Cytotoxic prenylflavanones from Taiwanese propolis. J Nat Prod 66:503–506

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Wu CL, Lin JK (2004) Propolin C from propolis induces apoptosis through activating caspases, Bid and cytochrome c release in human melanoma cells. Biochem Pharmacol 67:53–66

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Wu CL, Lin JK (2007) Apoptosis of human melanoma cells induced by the novel compounds propolin A and propolin B from Taiwenese propolis. Cancer Lett 245:218–231

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Hsiao CJ, Lee SS et al (2012) Chemical modification and anticancer effect of prenylated flavanones from Taiwanese propolis. Nat Prod Res 26:116–124

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Mukwaya E, Wong MS et al (2014) A systematic review on biological activities of prenylated flavonoids. Pharm Biol 52:655–660

    Article  CAS  PubMed  Google Scholar 

  • Chin YW, Mdee LK, Mbwambo ZH et al (2006) Prenylated flavonoids from the root bark of Berchemia discolor, a Tanzanian medicinal plant. J Nat Prod 69:1649–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian BA, Grever MR, Byrd JC et al (2009) Flavopiridol in chronic lymphocytic leukemia: a concise review. Clin Lymphoma Myeloma 9(Suppl 3):S179–S185

    Article  CAS  PubMed  Google Scholar 

  • Cidade HM, Nacimento MSJ, Pinto MMM et al (2001) Artelastocarpin and carpelastofuran, two new flavones, and cytotoxicities of prenyl flavonoids from Artocarpus elasticus against three cancer cell lines. Planta Med 67:867–870

    Article  CAS  PubMed  Google Scholar 

  • Cottiglia F, Casu L, Bonsignore L et al (2005) New cytotoxic prenylated isoflavonoids from Bituminaria morisiana. Planta Med 71:254–260

    Article  CAS  PubMed  Google Scholar 

  • Cursino LMC, Lima NM, Murillo R et al (2016) Isolation of flavonoids from Deguelia duckeana and their effect on cellular viability, AMPK, eEF2, eIF2 and eIF4E. Molecules 21:E192

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Zhang S, Liu DC et al (2018) Enzymatic biosynthesis of novel bavachin glucosides via Bacillus UDP-glycosyltransferase. Phytochem Lett 23:9–14

    Article  CAS  Google Scholar 

  • Daskiewicz JB, Depeint F, Viornery L et al (2005) Effects of flavonoids on cell proliferation and caspase activation in a human colonic cell line HT29: an SAR study. J Med Chem 48:2790–2804

    Article  CAS  PubMed  Google Scholar 

  • Dat NT, Binh PTX, Quynh LTP et al (2010) Cytotoxic prenylated flavonoids from Morus alba. Fitoterapia 81:1224–1227

    Article  CAS  PubMed  Google Scholar 

  • Delmulle L, Bellahcéne A, Dhooge W et al (2006) Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13:732–734

    Article  CAS  PubMed  Google Scholar 

  • Delmulle L, Berghe TV, Keukeleire DD et al (2008) Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother Res 22:197–203

    Article  CAS  PubMed  Google Scholar 

  • Di X, Wang S, Wang B et al (2013) New phenolic compounds from the twigs of Artocarpus heterophyllus. Drug Discov Ther 7:24–28

    Article  CAS  PubMed  Google Scholar 

  • Ding P, Chen D, Bastow KF et al (2004) Cytotoxic isoprenylated flavonoids from the roots of Sophora flavescens. Helv Chim Acta 87:2574–2580

    Article  CAS  Google Scholar 

  • Dong X, Zhou X, Jing H et al (2011) Pharmacophore identification, virtual screening and biological evaluation of prenylated flavonoids derivatives as PKB/Akt1 inhibitors. Eur J Med Chem 46:5949–5958

    Article  CAS  PubMed  Google Scholar 

  • Dzoyem JP, Tchamgoue J, Tchouankeu JC et al (2018) Antibacterial activity and cytotoxicity of flavonoids compounds isolated from Pseudarthria hookeri Wight & Arn. (Fabaceae). S African J Bot 114:100–103

    Article  CAS  Google Scholar 

  • Edziri H, Mastouri M, Mahjoub MA et al (2012) Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules 17:7284–7293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gamal AA, Al-Massarani SM, Abdel-Mageed WM et al (2017) Prenylated flavonoids from Commiphora opobalsamum stem bark. Phytochemistry 141:80–85

    Article  CAS  PubMed  Google Scholar 

  • Elingold I, Isollabella MP, Casanova MB et al (2008) Mitochondrial toxicity and antioxidant activity of a prenylated flavonoid isolated from Dalea elegans. Chem Biol Interact 171:294–305

    Article  CAS  PubMed  Google Scholar 

  • Escobar Z, Solano C, Larsson R et al (2014) Synthesis of poinsettifolin A. Tetrahedron 70:9052–9056

    Article  CAS  Google Scholar 

  • Fang N, Casida JE (1999) New bioactive flavonoids and stilbenes in cubé resin insecticide. J Nat Prod 62:205–210

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Chen M, Ouyang Y et al (2018) Icaritin induces ovarian cancer cell apoptosis through activation of p53 and inhibition of Akt/mTOR pathway. Life Sci 202:188–194

    Article  CAS  PubMed  Google Scholar 

  • Gillet JP, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105:452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Zhang X, Meng J et al (2011) An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. Eur J Pharmacol 658:114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Feng L, Huang C et al (2013a) Prenylflavone derivatives from Broussonetia papyrifera, inhibit the growth of breast cancer cells in vitro and in vivo. Phytochem Lett 6:331–336

    Article  CAS  Google Scholar 

  • Guo M, Wang M, Zhang X et al (2013b) Broussoflavonol B restricts growth of ER-negative breast cancer stem-like cells. Anticancer Res 33:1873–1880

    CAS  PubMed  Google Scholar 

  • Gupta N, Qayum A, Raina A et al (2018) Synthesis and biological evaluation of novel bavachinin analogs as anticancer agents. Eur J Med Chem 145:511–523

    Article  CAS  PubMed  Google Scholar 

  • Han S, Gou Y, Jin D et al (2018) Effects of icaritin on the physiological activities of esophageal cancer stem cells. Biochem Biophys Res Commun 504:792–796

    Article  CAS  PubMed  Google Scholar 

  • Hashim N, Rahmani M, Sukari MA et al (2010) Two new xanthones from Artocarpus obtusus. J Asian Nat Prod Res 12:106–112

    Article  CAS  PubMed  Google Scholar 

  • He J, Wang Y, Duan F et al (2010) Icaritin induces apoptosis of HepG2 cells via the JNK1 signaling pathway independent of the estrogen receptor. Planta Med 76:1834–1839

    Article  CAS  PubMed  Google Scholar 

  • Henley T, Reddivari L, Broeckling CD et al (2014) American India Pale Ale matrix rich in xanthohumol is potent in suppressing proliferation and elevating apoptosis of human colon cancer cells. Int J Food Sci Technol 49:2464–2471

    Article  CAS  Google Scholar 

  • Hong J, Zhang Z, Lv W et al (2013) Icaritin synergistically enhances the radiosensitivity of 4T1 breast cancer cells. PLoS ONE 8:e71347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Ismail Z (2011) New prenylated flavonoids of Orthosiphon stamineus grown in Malaysia. Asian J Biotechnol 3:200–205

    Article  CAS  Google Scholar 

  • Hsu CL, Shyu MH, Lin JA et al (2011) Cytotoxic effects of geranyl flavonoid derivatives from the fruit of Artocarpus communis in SK-Hep-1 human hepatocellular carcinoma cells. Food Chem 127:127–134

    Article  CAS  Google Scholar 

  • Huang WJ, Huang CH, Wu CL et al (2007a) Propolin G, a prenylflavanone, isolated from Taiwanese propolis, induces caspase-dependent apoptosis in brain cancer cells. J Agric Food Chem 55:7366–7376

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhu D, Lou Y (2007b) A novel anticancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur J Pharmacol 564:26–36

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Zhang CP, Wang K et al (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudcová T, Bryndová J, Fialová K et al (2014) Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines. J Inst Brew 120:225–230

    Article  CAS  Google Scholar 

  • Jin YJ, Lin CC, Lu TM et al (2015) Chemical constituents derived from Artocarpus xanthocarpus as inhibitors of melanin biosynthesis. Phytochemistry 117:424–435

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Yoon YJ, Jeon YJ et al (2017) Geranylnaringenin (CG902) inhibits constitutive and inducible STAT3 activation through the activation of SHP-2 tyrosine phosphatase. Biochem Pharmacol 142:46–57

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Jin SE, Choi RJ et al (2011) Anti-tumorigenic activity of sophoflavescenol against Lewis lung carcinoma in vitro and in vivo. Arch Pharm Res 34:2087–2099

    Article  CAS  PubMed  Google Scholar 

  • Kaennakam S, Siripong P, Tip-pyang S (2017) Cytotoxicities of two new isoflavanes from the roots of Dalbergia velutina. J Nat Med 71:310–314

    Article  CAS  PubMed  Google Scholar 

  • Kawakami S, Harinantenaina L, Matsunami K et al (2008) Macaflavanones A-G, prenylated flavanones from the leaves of Macaranga tanarius. J Nat Prod 71:1872–1876

    Article  CAS  PubMed  Google Scholar 

  • Keiler AM, Macejova D, Dietz BM et al (2017) Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. J Steroid Biochem Mol Biol 174:234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YK, Min BS, Bae KH (1997) A cytotoxic constituent from Sophora flavescens. Arch Pharm Res 20:342–345

    Article  CAS  PubMed  Google Scholar 

  • Kitdamrongtham W, Ishii K, Ebina K et al (2014) Limonoids and flavonoids from the flowers of Azadirachta indica var. siamensis, and their melanogenesis-inhibitory and cytotoxic activities. Chem Biodivers 11:73–84

    Article  CAS  PubMed  Google Scholar 

  • Ko WG, Kang TH, Kim NY et al (2000) Lavandulylflavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens. Toxicol In Vitro 14:429–433

    Article  CAS  PubMed  Google Scholar 

  • Ko HH, Lu YH, Yang SZ et al (2005) Cytotoxic prenylflavonoids from Artocarpus elasticus. J Nat Prod 68:1692–1695

    Article  CAS  PubMed  Google Scholar 

  • Kofujita H, Yaguchi M, Doi N et al (2004) A novel cytotoxic prenylated flavonoid from the root of Morus alba. J Insect Biotechnol Sericol 73:113–116

    CAS  Google Scholar 

  • Kong Y, Xiao JJ, Meng SC et al (2010) A new cytotoxic flavonoid from the fruit of Sinopodophyllum hexandrum. Fitoterapia 81:367–370

    Article  CAS  PubMed  Google Scholar 

  • Kotecha R, Takami A, Espinoza JL (2016) Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 7:52517–52529

    Article  PubMed  PubMed Central  Google Scholar 

  • Krajnović T, Kaluđerović GN, Wessjohann LA et al (2016) Versatile antitumor potential of isoxanthohumol: enhancement of paclitaxel activity in vivo. Pharmacol Res 105:62–73

    Article  CAS  PubMed  Google Scholar 

  • Kuete V, Ngameni B, Wiench B et al (2011) Cytotoxicity and mode of action of four naturally occuring flavonoids from the genus Dorstenia: gancaonin Q, 4-hydroxylonchocarpin, 6-prenylapigenin, and 6,8-diprenyleriodictyol. Planta Med 77:1984–1989

    Article  CAS  PubMed  Google Scholar 

  • Kuete V, Mbaveng AT, Zeino M et al (2015) Cytotoxicity of three naturally occurring flavonoid derived compounds (artocarpesin, cycloartocarpesin and isobavachalcone) towards multi-factorial drug-resistant cancer cells. Phytomedicine 22:1096–1102

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Pathania AS, Nalli YK et al (2015) Synthesis of new O-alkyl and alkyne-azide cycloaddition derivatives of 4´-methoxy licoflavanone: a distinct prenylated flavonoids depicting potent cytotoxic activity. Med Chem Res 24:669–683

    Article  CAS  Google Scholar 

  • Lee JC, Won SJ, Chao CL et al (2008) Morusin induces apoptosis and suppresses NF-κB activity in human colorectal cancer HT-29 cells. Biochem Biophys Res Commun 372:236–242

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang D, Xia MY et al (2009a) Cytotoxic prenylated flavonoids from the stem bark of Maackia amurensis. Chem Pharm Bull 57:302–306

    Article  CAS  Google Scholar 

  • Li X, Xu L, Wu P et al (2009b) Prenylflavonols from the leaves of Macaranga sampsonii. Chem Pharm Bull 57:495–498

    Article  CAS  Google Scholar 

  • Li F, Awale S, Tezuka Y et al (2009c) Cytotoxic constituents of propolis from Myanmar and their structure–activity relationship. Biol Pharm Bull 32:2075–2078

    Article  CAS  PubMed  Google Scholar 

  • Li S, Priceman SJ, Xin H et al (2013) Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS ONE 8:e81657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Wu X, Wang X et al (2018) Two novel compounds from the root bark of Morus alba L. Nat Prod Res 32:36–42

    Article  CAS  PubMed  Google Scholar 

  • Limper C, Wang Y, Ruhl S et al (2013) Compounds isolated from Psoralea corylifolia seeds inhibit protein kinase activity and induce apoptotic cell death in mammalian cells. J Pharm Pharmacol 65:1393–1408

    Article  CAS  PubMed  Google Scholar 

  • Lin WL, Lai DY, Lee YJ et al (2015) Antitumor progression potential of morusin suppressing STAT3 and NFκB in human hepatoma SK-Hep1 cells. Toxicol Lett 232:490–498

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Lan R, Xin XL et al (2008) A new lavandulyl flavonoid from Sorphora flavescens Ait. Chin Chem Lett 19:1453–1455

    Article  CAS  Google Scholar 

  • Liu Y, Shi L, Liu Y et al (2018) Activation of PPARγ mediates icaritin-induced cell cycle arrest and apoptosis in glioblastoma multiforme. Biomed Pharmacother 100:358–366

    Article  CAS  PubMed  Google Scholar 

  • Lorendeau D, Dury L, Genoux-Bastide E et al (2014) Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and derivatives through GSH efflux. Biochem Pharmacol 90:235–245

    Article  CAS  PubMed  Google Scholar 

  • Luescher S, Urmann C, Butterweck V (2017) Effect of hops derived prenylated phenols on TNF-α induced barrier dysfunction in intestinal epithelial cells. J Nat Prod 80:925–931

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Dai YQ, Li N et al (2017) Enzymatic biosynthesis of novel neobavaisoflavone glucosides via Bacillus UDP-glycosyltransferase. Chin J Nat Med 15:281–287

    PubMed  Google Scholar 

  • Miranda CL, Stevens JF, Helmrich A et al (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37:271–285

    Article  CAS  PubMed  Google Scholar 

  • Murphy BT, Cao S, Norris A et al (2005) Cytotoxic flavanones of Schizolaena hystrix from the Madagascar rainforest. J Nat Prod 68:417–419

    Article  CAS  PubMed  Google Scholar 

  • Murphy BT, Cao S, Norris A et al (2006) Cytotoxic compounds of Schizolaena hystrix from the Madagascar rainforest. Planta Med 72:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Nam MS, Jung DB, Seo KH et al (2016) Apoptotic effect of sanggenol L via caspase activation and inhibition of NF-κB signaling in ovarian cancer cells. Phytother Res 30:90–96

    Article  CAS  PubMed  Google Scholar 

  • Nana F, Sandjo LP, Keumedjio F et al (2012) Ceramides and cytotoxic constituents from Ficus glumosa Del. (Moraceae). J Braz Chem Soc 23:482–487

    Article  CAS  Google Scholar 

  • Neves MP, Cidade H, Pinto M et al (2011) Prenylated derivatives of baicalein and 3,7-dihydroxyflavone: synthesis and study of their effects on tumor cell lines growth, cell cycle and apoptosis. Eur J Med Chem 46:2562–2574

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  • Ngnintedo D, Fotso GW, Kuete V et al (2016) Two new pterocarpans and a new pyrone derivative with cytotoxic activities from Ptycholobium contortum (N.E.Br.) Brummitt (Leguminosae): revised NMR assignment of mundulea lactone. Chem Cent J 10: 58

  • Nguyen PH, Sharma G, Dao TT et al (2012) New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae. Bioorg Med Chem 20:6459–6464

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VS, Shi L, Wang SC et al (2017) Synthesis of icaritin and β-anhydroicaritin Mannich base derivatives and their cytotoxic activities on three human cancer cell lines. Anticancer Agents Med Chem 17:137–142

    Article  CAS  PubMed  Google Scholar 

  • Ni G, Zhang QJ, Wang YH et al (2010) Chemical constituents of the stem bark of Morus cathayana. J Asian Nat Prod Res 12:505–515

    Article  CAS  PubMed  Google Scholar 

  • Niles AL, Moravec RA, Riss TL (2008) Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov 3:655–669

    Article  CAS  PubMed  Google Scholar 

  • Nkengfack AE, Azebaze AGB, Waffo AK et al (2001) Cytotoxic isoflavones from Erythrina indica. Phytochemistry 58:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Ou L, Han S, Ding W et al (2011) Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives. Mol Divers 15:665–675

    Article  CAS  PubMed  Google Scholar 

  • Pailee P, Sangpetsiripan S, Mahidol C et al (2015) Cytotoxic and cancer chemopreventive properties of prenylated stilbenoids from Macaranga siamensis. Tetrahedron 71:5562–5571

    Article  CAS  Google Scholar 

  • Pan SY, Zhou SF, Gao SH et al (2013) New perspectives on how to discover drugs from herbal medicines: cAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med 2013:627375

    PubMed  PubMed Central  Google Scholar 

  • Pan XW, Li Lin, Huang Yi et al (2016) Icaritin acts synergistically with epirubicin to suppress bladder cancer growth through inhibition of autophagy. Oncol Rep 35:334–342

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Yin SS, Yu HY et al (2018) Prenylated flavonoids and dihydrophenanthrenes from the leaves of Epimedium brevicornu and their cytotoxicity against HepG2 cells. Nat Prod Res 32:2253–2259

    Article  CAS  PubMed  Google Scholar 

  • Passreiter CM, Suckow-Schnitker AK, Kulawik A et al (2015) Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death. Phytochemistry 117:237–244

    Article  CAS  PubMed  Google Scholar 

  • Pedro M, Lourenço CF, Cidade H et al (2006) Effects of natural prenylated flavones in the phenotypical ER (+) MCF-7 and ER (–) MDA-MB-231 human breast cancer cells. Toxicol Lett 164:24–36

    Article  CAS  PubMed  Google Scholar 

  • Phommart S, Sutthivaiyakit P, Chimnoi N et al (2005) Constituents of the leaves of Macaranga tanarius. J Nat Prod 68:927–930

    Article  CAS  PubMed  Google Scholar 

  • Poerwono H, Sasaki S, Hattori Y et al (2010) Efficient microwave-assisted prenylation of pinostrobin and biological evaluation of its derivatives as antitumor agents. Bioorg Med Chem Lett 20:2086–2089

    Article  CAS  PubMed  Google Scholar 

  • Pollastro F, Minassi A, Fresu LG (2018) Cannabis phenolics and their bioactivities. Curr Med Chem 25:1160–1185

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Fan M, He J et al (2015) New cytotoxic and anti-inflammatory compounds isolated from Morus alba L. Nat Prod Res 29:1711–1718

    Article  CAS  PubMed  Google Scholar 

  • Rao GV, Swamy BN, Chandregowda V et al (2009) Synthesis of (±)abyssinone I and related compounds: their anti-oxidant and cytotoxic activities. Eur J Med Chem 44:2239–2245

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Kardono LBS, Riswan S et al (2010) Cytotoxic and NF-κB inhibitory constituents of Artocarpus rigida. J Nat Prod 73:949–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosselli S, Bruno M, Maggio A et al (2011) Cytotoxic geranylflavonoids from Bonannia graeca. Phytochemistry 72:942–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rukachaisirikul T, Saekee A, Tharibun C et al (2007) Biological activities of the chemical constituents of Erythrina stricta and Erythrina subumbrans. Arch Pharm Res 30:1398–1403

    Article  CAS  PubMed  Google Scholar 

  • Seo EK, Silva GL, Chai HB et al (1997) Cytotoxic prenylated flavanones from Monotes engleri. Phytochemistry 45:509–515

    Article  CAS  PubMed  Google Scholar 

  • Seo EK, Lee D, Shin YG et al (2003) Bioactive prenylated flavonoids from the stem bark of Artocarpus kemando. Arch Pharm Res 26:124–127

    Article  CAS  PubMed  Google Scholar 

  • Shen CC, Wang ST, Tsai SY et al (2005) Cinnamylphenols from Phyllodium pulchellum. J Nat Prod 68:791–793

    Article  CAS  PubMed  Google Scholar 

  • Sheu YW, Chiang LC, Chen IS et al (2005) Cytotoxic flavonoids and new chromenes from Ficus formosana f. formosana. Planta Med 71:1165–1167

    Article  CAS  PubMed  Google Scholar 

  • Shi YQ, Fukai T, Sakagami H et al (2001) Cytotoxic flavonoids with isoprenoid groups from Morus mongolica. J Nat Prod 64:181–188

    Article  CAS  PubMed  Google Scholar 

  • Shirataki Y, Motohashi N, Tani S et al (2001) In vitro biological activity of prenylflavanones. Anticancer Res 21:275–280

    CAS  PubMed  Google Scholar 

  • Šmejkal K (2014) Cytotoxic potential of C-prenylated flavonoids. Phytochem Rev 13:245–275

    Article  CAS  Google Scholar 

  • Šmejkal K, Svačinová J, Šlapetová T et al (2010) Cytotoxic activities of several geranyl-substituted flavanones. J Nat Prod 73:568–572

    Article  CAS  PubMed  Google Scholar 

  • Sohn HY, Son KH, Kwon CS et al (2004) Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 11:666–672

    Article  CAS  PubMed  Google Scholar 

  • Son IH, Chung IM, Lee SI et al (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755

    Article  CAS  PubMed  Google Scholar 

  • Stompor M, Uram Ł, Podgórski R (2017) In vitro effect of 8-prenylnaringenin and naringenin on fibroblasts and glioblastoma cells-cellular accumulation and cytotoxicity. Molecules 22:E1092

    Article  CAS  PubMed  Google Scholar 

  • Su XH, Li CY, Zhong YJ et al (2012) A new prenylated chalcone from the seeds of Millettia pachycarpa. Chin J Nat Med 10:222–225

    Article  CAS  Google Scholar 

  • Sudanich S, Tiyaworanant S, Yenjai C (2017) Cytotoxicity of flavonoids and isoflavonoids from Crotalaria bracteata. Nat Prod Res 31:2641–2646

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Han J, Duan J et al (2007) Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother Res 21:269–277

    Article  CAS  PubMed  Google Scholar 

  • Sun YJ, Hao ZY, Si JG et al (2015a) Prenylated flavonoids from the fruits of Sinopodophyllum emodi and their cytotoxic activities. RSC Adv 5:82736–82742

    Article  CAS  Google Scholar 

  • Sun L, Peng Q, Qu L et al (2015b) Anticancer agent icaritin induces apoptosis through caspase-dependent pathways in human hepatocellular carcinoma cells. Mol Med Rep 11:3094–3100

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Wang D, Li FF et al (2016) Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii. Bioorg Med Chem Lett 26:3968–3972

    Article  CAS  PubMed  Google Scholar 

  • Sutthivaiyakit S, Thongnak O, Lhinhatrakool T et al (2009) Cytotoxic and antimycobacterial prenylated flavonoids from the roots of Eriosema chinense. J Nat Prod 72:1092–1096

    Article  CAS  PubMed  Google Scholar 

  • Tamir S, Eizenberg M, Somjen D et al (2000) Estrogenic and antiproliferative properties of glabridin from licorice in human breast cancer cells. Cancer Res 60:5704–5709

    CAS  PubMed  Google Scholar 

  • Tan KW, Cooney J, Jensen D et al (2014) Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol Nutr Food Res 58:2099–2110

    Article  CAS  PubMed  Google Scholar 

  • Tan HL, Chan KG, Pusparajah P et al (2016) Anti-cancer properties of the naturally occurring aphrodisiacs: icariin and its derivatives. Front Pharmacol 7:191

    PubMed  PubMed Central  Google Scholar 

  • Teixeira MVS, Lima JQ, Pimenta ATA et al (2018) New flavone and other compounds from Tephrosia egregia: assessing the cytotoxic effect on human tumor cell lines. Rev Bras Farmacogn 28:333–338

    Article  CAS  Google Scholar 

  • Tokalov SV, Henker Y, Schwab P et al (2004) Toxicity and cell cycle effects of synthetic 8-prenylnaringenin and derivatives in human cells. Pharmacology 71:46–56

    Article  CAS  PubMed  Google Scholar 

  • Tong JS, Zhang QH, Huang X et al (2011) Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells. PLoS ONE 6:e16781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tronina T, Bartmańska A, Filip-Psurska B et al (2013) Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro. Bioorg Med Chem 21:2001–2006

    Article  CAS  PubMed  Google Scholar 

  • Venturelli S, Burkard M, Biendl M et al (2016) Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 32:1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Versiani MA, Diyabalanage T, Ratnayake R et al (2011) Flavonoids from eight tropical plant species that inhibit the multidrug resistance transporter ABCG2. J Nat Prod 74:262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogler B, Cholewa L, Schmidt J et al (2006) Cytotoxic flavonoids from the bark of Lonchocarpus haberi from Monteverde, Costa Rica. PharmacologyOnline 3:850–855

    Google Scholar 

  • Wang XF, Wang J (2014) Icaritin suppresses the proliferation of human osteosarcoma cells in vitro by increasing apoptosis and decreasing MMP expression. Acta Pharmacol Sin 35:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Hou AJ, Chen L et al (2004) New isoprenylated flavones, artochamins A–E, and cytotoxic principles from Artocarpus chama. J Nat Prod 67:757–761

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Hou AJ, Zhu GF et al (2005) Cytotoxic and antifungal isoprenylated xanthones and flavonoids from Cudrania fruticosa. Planta Med 71:273–274

    Article  CAS  PubMed  Google Scholar 

  • Wang QH, Guo S, Yang XY et al (2017) Flavonoids isolated from Sinopodophylli fructus and their bioactivities against human breast cancer cells. Chin J Nat Med 15:225–233

    PubMed  Google Scholar 

  • Wätjen W, Weber N, Lou YJ et al (2007) Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol 45:119–124

    Article  CAS  PubMed  Google Scholar 

  • Wätjen W, Suckow-Schnitker AK, Rohrig R et al (2008) Prenylated flavonoid derivatives from the bark of Erythrina addisoniae. J Nat Prod 71:735–738

    Article  CAS  PubMed  Google Scholar 

  • Wesołowska O, Wiśniewski J, Środa K et al (2010) 8-Prenylnaringenin is an inhibitor of multidrug resistance-associated transporters, P-glycoprotein and MRP1. Eur J Pharmacol 644:32–40

    Article  CAS  PubMed  Google Scholar 

  • WHO (2018a) What is cancer? www.who.int/cancer/en (Cited 11 Oct 2018)

  • WHO (2018b) Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. Press release N° 263 www.who.int/cancer/PRGlobocanFinal.pdf (Cited 11 Oct 2018)

  • Win NN, Awale S, Esumi H et al (2007) Bioactive secondary metabolites from Boesenbergia pandurata of Myanmar and their preferential cytotoxicity against human pancreatic cancer PANC-1 cell line in nutrient-deprived medium. J Nat Prod 70:1582–1587

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Jiang C, Han H et al (2015) Icaritin inhibits the invasion and epithelial-to-mesenchymal transition of glioblastoma cells by targeting EMMPRIN via PTEN/AKt/HIF-1α signaling. Clin Exp Pharmacol Physiol 42:1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Yang DS, Wei JG, Peng WB et al (2014) Cytotoxic prenylated bibenzyls and flavonoids from Macaranga kurzii. Fitoterapia 99:261–266

    Article  CAS  PubMed  Google Scholar 

  • Yang DS, Li ZL, Peng WB et al (2015a) Three new prenylated flavonoids from Macaranga denticulata and their anticancer effects. Fitoterapia 103:165–170

    Article  CAS  PubMed  Google Scholar 

  • Yang DS, Peng WB, Yang YP et al (2015b) Cytotoxic prenylated flavonoids from Macaranga indica. Fitoterapia 103:187–191

    Article  CAS  PubMed  Google Scholar 

  • Yang DS, Wang SM, Peng WB et al (2015c) Minor prenylated flavonoids from the twigs of Macaranga adenantha and their cytotoxic activity. Nat Prod Bioprospect 5:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JG, Lu R, Ye XJ et al (2017) Icaritin reduces oral squamous cell carcinoma progression via the inhibition of STAT3 signaling. Int J Mol Sci 18:E132

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Yoder BJ, Cao S, Norris A et al (2007) Antiproliferative prenylated stilbenes and flavonoids from Macaranga alnifolia from the Madagascar rainforest. J Nat Prod 70:342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon KH, Park KJ, Yin J et al (2016) Antioxidative and antitumor effects of isoflavones isolated from the leaves of Maackia fauriei. Rec Nat Prod 10:441–451

    CAS  Google Scholar 

  • Zakaria I, Ahmat N, Jaafar FM et al (2012) Flavonoids with antiplasmodial and cytotoxic activities of Macaranga triloba. Fitoterapia 83:968–972

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Liu WW, Li B et al (2014a) Anticancer effect of icaritin on human lung cancer cells through inducing S phase cell cycle arrest and apoptosis. J Huazhong Univ Sci Technol 34:497–503

    Article  CAS  Google Scholar 

  • Zheng ZP, Xu Y, Qin C et al (2014b) Characterization of antiproliferative activity constituents from Artocarpus heterophyllus. J Agric Food Chem 62:5519–5527

    Article  CAS  PubMed  Google Scholar 

  • Żołnierczyk AK, Mączka WK, Grabarczyk M et al (2015) Isoxanthohumol–biologically active hop flavonoid. Fitoterapia 103:71–82

    Article  CAS  PubMed  Google Scholar 

  • Zou YS, Hou AJ, Zhu GF et al (2004) Cytotoxic isoprenylated xanthones from Cudrania tricuspidata. Bioorg Med Chem 12:1947–1953

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar F, Khan SI, Ross SA et al (2017) Prenylated flavonol glycosides from Epimedium grandiflorum: cytotoxicity and evaluation against inflammation and metabolic disorder. Phytochem Lett 20:160–167

    Article  CAS  Google Scholar 

  • Zuo GY, Yang CX, Han J et al (2018) Synergism of prenylflavonoids from Morus alba root bark against clinical MRSA isolates. Phytomedicine 39:93–99

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Šmejkal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 286 kb)

Supplementary material 2 (DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molčanová, L., Janošíková, D., Dall´Acqua, S. et al. C-prenylated flavonoids with potential cytotoxic activity against solid tumor cell lines. Phytochem Rev 18, 1051–1100 (2019). https://doi.org/10.1007/s11101-019-09641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09641-z

Keywords

Navigation