Skip to main content

Advertisement

Log in

Phytochemicals and their effective role in the treatment of diabetes mellitus: a short review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

There is a global increase in the incidence of diabetes mellitus (DM). Hyperglycemia is one of the prevailing conditions which gives rise to various diabetic complications. The major complications include diabetic nephropathy, retinopathy, neuropathy, delayed wound healing, heart attack, peripheral vascular disturbances and diabetic ketoacidosis. Treatment of complications due to DM always poses a challenge to the attending clinician. Alongsideallopathic medicines, DM and its complications were reported to be effectively treated with various natural products. In the present review, we discuss the role of different phytochemicals which were reported to be beneficial in the treatment of hyperglycemic conditions in DM. Most medicinal plants contain micronutrients, amino acids and proteins, mucilages, essential oils, sterols and triterpenoids, saponins, carotenoids, alkaloids, flavonoids, phenolic acids, tannins, bitter principles and coumarins. We discuss the effective role of these phytochemicals with an emphasis on secondary metabolites which mimic the action of insulin, and highlight their importance as future antidiabetic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALT:

Alanine transaminase

AST:

Aspartate transaminase

CAT:

Catalase

DM:

Diabetes mellitus

FBG:

Fasting blood glucose

GLUT:

Glucose transporter

GSH:

Glutathione

MDA:

Malondialdehyde

PPARγ:

Peroxisome proliferator-activated receptor gamma

PTB1B:

Protein tyrosine phosphatase 1B

SOD:

Superoxide dismutase

References

  • Alsaadi JHB, Al-Maliki ADM (2015) Hypoglycemic effect of 24-methylencycloartan-3-one isolated from Prosopis juliflora pods in alloxan induced diabetic rabbits. World J Exp Biosci 3(1):6–13

    Google Scholar 

  • Al-Shaqha WM, Khan M, Salam N et al (2015) Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC Complement Altern Med 15:379

    Article  PubMed  PubMed Central  Google Scholar 

  • Aniszewski T (2015) Alkaloids: chemistry, biology, ecology, and applications. Elsevier, London

    Google Scholar 

  • Bacanli M, Anlar HG, Aydin S et al (2017) d-Limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem Toxicol 110:434–442

    Article  CAS  PubMed  Google Scholar 

  • Bahadori MB, Salehi P, Sonboli A (2017) Comparative study of the essential oil composition of Salvia urmiensis and its enzyme inhibitory activities linked to diabetes mellitus and Alzheimer’s disease. Int J Food Prop 20(12):2974–2981

    Article  CAS  Google Scholar 

  • Carella AM, Marinelli T, Melfitano A et al (2017) Hypoglycemia by ginseng in type 2 diabetic patient: case report. Heighpubs Obes Diabetes Metab Syndr 1:1–6

    Google Scholar 

  • Chang C, Chou C, Liao B et al (2015) Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin-resistant cells. J Funct Foods 13:214–224

    Article  Google Scholar 

  • Chang W, Li K, Guan F et al (2016) Berberine pretreatment confers cardioprotection against ischemia-reperfusion injury in a rat model of type 2 diabetes. J Cardiovasc Pharmacol Ther 21(5):486–494

    Article  CAS  PubMed  Google Scholar 

  • Chen QB, Xin XL, Yang Y et al (2014) Highly conjugated norditerpenoid and pyrroloquinoline alkaloids with potent PTP1B inhibitory activity from Nigella glandulifera. J Nat Prod 77(4):807–812

    Article  CAS  PubMed  Google Scholar 

  • Chen JC, Lau CB, Chan JY et al (2015) The antigluconeogenic activity of cucurbitacins from Momordica charantia. Planta Med 81(4):327–332

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wu Y, Zou J et al (2016) α-Glucosidase inhibition and antihyperglycemic activity of flavonoids from Ampelopsis grossedentata and the flavonoid derivatives. Bioorg Med Chem Lett 24(7):1488–1494

    Article  CAS  Google Scholar 

  • Chen Q, Mo R, Wu N et al (2017) Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in DM rats. Front Pharmacol 8:334

    Article  PubMed  PubMed Central  Google Scholar 

  • Chukwujekwu JC, Rengasamy KR, de Kock CA et al (2016) Alpha-glucosidase inhibitory and antiplasmodial properties of terpenoids from the leaves of Buddleja saligna Willd. J Enzyme Inhib Med Chem 31(1):63–66

    Article  CAS  PubMed  Google Scholar 

  • Collaboration NCDRF (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387(10027):1513–1530

    Article  Google Scholar 

  • Dange SV, Shende SS, Rane BT et al (2016) An observational study of the antidiabetic activity of berberine in newly diagnosed type 2 diabetes mellitus patients. J Pharm Biomed Sci 6(4):230–233

    CAS  Google Scholar 

  • Dar A, Faizi S, Naqvi S et al (2005) Analgesic and antioxidant activity of mangiferin and its derivatives: the structure activity relationship. Biol Pharm Bull 28(4):596–600

    Article  CAS  Google Scholar 

  • Dong Y, Chen YT, Yang YX et al (2016) Metabolomics study of type 2 diabetes mellitus and the antidiabetic effect of berberine in Zucker diabetic fatty rats using uplc-ESI-hdms. Phytother Res 30(5):823–828

    Article  CAS  PubMed  Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezuruike UF, Prieto JM (2014) The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. J Ethnopharmacol 155(2):857–924

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Chen J, Lv H et al (2017) Isolation and identification of terpenoids from chicory roots and their inhibitory activities against yeast α-glucosidase. Eur Food Res Technol 243(6):1009–1017

    Article  CAS  Google Scholar 

  • Felix-Silva J, Giordani RB, da Silva-Jr AA et al (2014) Jatropha gossypiifolia L. (Euphorbiaceae): a review of traditional uses, phytochemistry, pharmacology, and toxicology of this medicinal plant. Evid Based Complement Altern Med 2014:369204

    Article  Google Scholar 

  • Gonzales GB, Smagghe G, Grootaert C et al (2015) Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev 47(2):175–190

    Article  CAS  PubMed  Google Scholar 

  • Granados S, Balcazar N, Guillen A et al (2015) Evaluation of the hypoglycemic effects of flavonoids and extracts from Jatropha gossypifolia L. Molecules 20(4):6181–6193

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Niu X, Xiao T et al (2015) Chemical profile and inhibition of α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by flavonoids from licorice (Glycyrrhiza uralensis Fisch). J Funct Foods 14:324–336

    Article  CAS  Google Scholar 

  • Han J, Yi J, Liang F et al (2015) X-3, a mangiferin derivative, stimulates AMP-activated protein kinase and reduces hyperglycemia and obesity in db/db mice. Mol Cell Endocrinol 405:63–73

    Article  CAS  PubMed  Google Scholar 

  • Hatano T, Eerdunbayaer CY et al (2017) Licorice as a resource for pharmacologically active phenolic substances: antioxidant and antimicrobial effects. In: Sakagami H (ed) Biological activities and action mechanisms of licorice ingredients. InTech, Houston

    Google Scholar 

  • Hui Z, Zhou X, Li R et al (2015) Studies on the extraction process of total flavonoids in Radix puerariae and their hypoglycemic effect in mice. Biomed Res 26(1):51–54

    CAS  Google Scholar 

  • Hussan F, Teoh SL, Muhamad N et al (2014) Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression. J Wound Care 23(8):400–407

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Arshad MS, Butt MS et al (2017) Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 16(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  • Isah MB, Masola B (2017) Effect of oleanolic acid on small intestine morphology and enzymes of glutamine metabolism in diabetic rats. Int J Physiol Pathophysiol Pharmacol 9(5):128–136

    PubMed  PubMed Central  Google Scholar 

  • Jiang SJ, Dong H, Li JB et al (2015) Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J Gastroenterol 21(25):7777–7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang B, Ji M, Liu W et al (2016) Antidiabetic activities of a cucurbitane-type triterpenoid compound from Momordica charantia in alloxan-induced diabetic mice. Mol Med Rep 14(5):4865–4872

    Article  CAS  PubMed  Google Scholar 

  • Jing L, Zhang Y, Fan S et al (2013) Preventive and ameliorating effects of citrus d-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity. Eur J Pharmacol 715(1–3):46–55

    Article  CAS  PubMed  Google Scholar 

  • Joshi SR, Standl E, Tong N et al (2015) Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother 16(13):1959–1981

    Article  PubMed  Google Scholar 

  • Kang OJ, Kim JS (2016) Comparison of ginsenoside contents in different parts of Korean ginseng (Panax ginseng C.A. Meyer). Prev Nutr Food Sci 21(4):389–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Katiyar D, Singh V, Gilani SJ et al (2015) Hypoglycemic herbs and their polyherbal formulations: a comprehensive review. Med Chem Res 24(1):1–21

    Article  CAS  Google Scholar 

  • Keshari AK, Kumar G, Kushwaha PS et al (2016) Isolated flavonoids from Ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats. J Ethnopharmacol 181:252–262

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Jung Yang H, Lee IS et al (2015) The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci Rep 5:18325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirpichnikov D, McFarlane SI, Sowers JR (2002) Metformin: an update. Ann Intern Med 137(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Lan J, Zhao Y, Dong F et al (2015) Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol 161:69–81

    Article  CAS  PubMed  Google Scholar 

  • Lee AL, Chen BC, Mou CH et al (2016) Association of traditional Chinese medicine therapy and the risk of vascular complications in patients with type II diabetes mellitus: a nationwide, retrospective, Taiwanese-registry, cohort study. Medicine 95(3):e2536

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D, Peng C, Xie X et al (2014) Antidiabetic effect of flavonoids from Malus toringoides (Rehd.) Hughes leaves in diabetic mice and rats. J Ethnopharmacol 153(3):561–567

    Article  CAS  PubMed  Google Scholar 

  • Li M, Huang X, Ye H et al (2016) Randomized, double-blinded, double-dummy, active-controlled, and multiple-dose clinical study comparing the efficacy and safety of mulberry twig (Ramulus Mori, Sangzhi) alkaloid tablet and acarbose in individuals with type 2 diabetes mellitus. Evid Based Complement Altern Med 2016:7121356

    Google Scholar 

  • Li J, Yuan K, Shang S et al (2017) A safer hypoglycemic agent for type 2 diabetes—Berberine organic acid salt. J Funct Foods 38:399–408

    Article  CAS  Google Scholar 

  • Liu L, Liu J, Gao Y et al (2014) Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets. Br J Pharmacol 171(13):3246–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shen Z, Chen Z et al (2015) Use of the effective fraction of alkaloids from mulberry twig in preparing hypoglycemic agents, Google Patents

  • Luo JZ, Kim JW, Luo L (2016) Effects of ginseng and its four purifed ginsenosides (Rb2, Re, Rg1, Rd) on human pancreatic islet β cell in vitro. Eur J Pharm Med Res 3(1):110–119

    PubMed  PubMed Central  Google Scholar 

  • Ma H, Hu Y, Zou Z et al (2016) Antihyperglycemia and antihyperlipidemia effect of protoberberine alkaloids from Rhizoma Coptidis in HepG2 cell and diabetic KK-Ay mice. Drug Dev Res 77(4):163–170

    Article  CAS  PubMed  Google Scholar 

  • Mahomoodally MF, Mootoosamy A, Wambugu S (2016) Traditional therapies used to manage diabetes and related complications in Mauritius: a comparative ethnoreligious study. Evid Based Complement Altern Med 2016:4523828

    Article  Google Scholar 

  • Marques AM, Pereira SL, Paiva RA et al (2015) Hypoglycemic effect of the methanol flower extract of Piper claussenianum and the major constituent 2′,6′-dihydroxy-4′-methoxychalcone in streptozotocin diabetic rats. Indian J Pharm Sci 77(2):237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruthur NM, Tseng E, Hutfless S et al (2016) Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 164(11):740–751

    Article  Google Scholar 

  • Matkowski A, Kus P, Goralska E et al (2013) Mangiferin—a bioactive xanthonoid, not only from mango and not just antioxidant. Mini Rev Med Chem 13(3):439–455

    CAS  PubMed  Google Scholar 

  • Mukundwa A, Mukaratirwa S, Masola B (2016) Effects of oleanolic acid on the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic male Sprague-Dawley rats. J Diabetes 8(1):98–108

    Article  CAS  PubMed  Google Scholar 

  • Murali R, Karthikeyan A, Saravanan R (2013) Protective effects of d-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol 112(3):175–181

    Article  CAS  PubMed  Google Scholar 

  • Oboh G, Olasehinde TA, Ademosun AO (2017) Inhibition of enzymes linked to type-2 diabetes and hypertension by essential oils from peels of orange and lemon. Int J Food Prop 20(Suppl 1):S586–S594

    Article  CAS  Google Scholar 

  • Park JY, Choi P, Kim T et al (2015) Protective effects of processed ginseng and its active ginsenosides on cisplatin-induced nephrotoxicity: in vitro and in vivo studies. J Agric Food Chem 63(25):5964–5969

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Rauf A (2017) Adaptogenic herb ginseng (Panax) as medical food: status quo and future prospects. Biomed Pharmacother 85:120–127

    Article  CAS  PubMed  Google Scholar 

  • Pollier J, Goossens A (2012) Oleanolic acid. Phytochemistry 77:10–15

    Article  CAS  PubMed  Google Scholar 

  • Qiu YY, Tang LQ, Wei W (2017) Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy. Mol Cell Endocrinol 443:89–105

    Article  CAS  Google Scholar 

  • Rebhun JF, Glynn KM, Missler SR (2015) Identification of glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human peroxisome proliferator-activated receptor gamma (PPARγ). Fitoterapia 106:55–61

    Article  CAS  PubMed  Google Scholar 

  • Sakthiswary R, Zakaria Z, Das S (2014) Diabetes mellitus: treatment challenges and the role of some herbal therapies. Middle East J Sci Res 20(7):786–798

    Google Scholar 

  • Saleh S, El-Maraghy N, Reda E et al (2014) Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: role of adiponectin and TNF-α. An Acad Bras Cienc 86(4):1935–1948

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Chen QB, Xin XL et al (2017) Anti-diabetic effect of three new norditerpenoid alkaloids in vitro and potential mechanism via PI3K/Akt signaling pathway. Biomed Pharmacother 87:145–152

    Article  CAS  PubMed  Google Scholar 

  • Tao K, Chen J, Wang L (2017) Effects of berberine on the expressions of NRF2 and HO-1 in endothelial cells of diabetic rat. Biomed Res 28(9):3860–3864

    CAS  Google Scholar 

  • Teoh SL, Latiff AA, Das S (2009a) The effect of topical extract of Momordica charantia (bitter gourd) on wound healing in nondiabetic rats and in rats with diabetes induced by streptozotocin. Clin Exp Dermatol 34(7):815–822

    Article  CAS  PubMed  Google Scholar 

  • Teoh SL, Latiff AA, Das S (2009b) A histological study of the structural changes in the liver of streptozotocin-induced diabetic rats treated with or without Momordica charantia (bitter gourd). Clin Ther 160(4):283–286

    CAS  Google Scholar 

  • Teoh SL, Abd Latiff A, Das S (2010) Histological changes in the kidneys of experimental diabetic rats fed with Momordica charantia (bitter gourd) extract. Roman J Morphol Embryol 51(1):91–95

    CAS  Google Scholar 

  • Thent ZC, Teoh SL, Das S et al (2012) Effect of Piper sarmentosum extract on the cardiovascular system of diabetic Sprague-Dawley rats: electron microscopic study. Evid Based Complement Altern Med 2012:628750

    Article  Google Scholar 

  • Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids. Springer, Berlin

    Google Scholar 

  • Tian W, Chen L, Zhang L et al (2017) Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats. Genet Mol Res 16(1):gmr16019463

    Google Scholar 

  • Tiong SH, Looi CY, Hazni H et al (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 18(8):9770–9784

    Article  CAS  PubMed  Google Scholar 

  • Tiong SH, Looi CY, Arya A et al (2015) Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia 102:182–188

    Article  CAS  PubMed  Google Scholar 

  • Wang HK (2000) The therapeutic potential of flavonoids. Expert Opin Investig Drugs 9(9):2103–2119

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu R, Zhang W et al (2013) Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol Cell Endocrinol 376(1–2):70–80

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wu J, Zhou Q et al (2015) Berberine nanosuspension enhances hypoglycemic efficacy on streptozotocin induced diabetic C57BL/6 mice. Evid Based Complement Altern Med 2015:239749

    Google Scholar 

  • Warjeet Singh L (2011) Traditional medicinal plants of Manipur as anti-diabetics. J Med Plants Res 5(5):677–687

    Google Scholar 

  • WHO (2013) WHO tranditional medicine strategy 2014–2023. WHO, Geneva

    Google Scholar 

  • WHO (2016) Global report on diabetes. WHO, France

    Google Scholar 

  • Wu F, Jin Z, Jin J (2013) Hypoglycemic effects of glabridin, a polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Mol Med Rep 7(4):1278–1282

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Shen L, Liu KJ et al (2010) Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes 59(10):2505–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang Z, Jiang L et al (2017) Total flavonoids extracted from Oxytropis falcata Bunge improve insulin resistance through regulation on the IKKβ/NF-κB inflammatory pathway. Evid Based Complement Altern Med 2017:2405124

    Google Scholar 

  • Yehuda I, Madar Z, Leikin-Frenkel A et al (2015) Glabridin, an isoflavan from licorice root, downregulates iNOS expression and activity under high-glucose stress and inflammation. Mol Nutr Food Res 59(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Yehuda I, Madar Z, Leikin-Frenkel A et al (2016) Glabridin, an isoflavan from licorice root, upregulates paraoxonase 2 expression under hyperglycemia and protects it from oxidation. Mol Nutr Food Res 60(2):287–299

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Xu J, Cao J et al (2017) Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). J Funct Foods 37:624–631

    Article  CAS  Google Scholar 

  • Yuldasheva NK, Egamova FR, Ismailova GI et al (2016) Effect of total flavonoids from Vexibia alopecuroides on the course of experimental diabetes in rats. Pharm Chem J 49(12):834–837

    Article  CAS  Google Scholar 

  • Zaccardi F, Webb DR, Yates T et al (2016) Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J 92(1084):63–69

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang H, Zhao X et al (2015) Effects of flavonoids-rich Chinese bayberry (Myrica rubra Sieb. et Zucc.) pulp extracts on glucose consumption in human HepG2 cells. J Funct Foods 14:144–153

    Article  CAS  Google Scholar 

  • Zhang L, Wei G, Liu Y et al (2016) Antihyperglycemic and antioxidant activities of total alkaloids from Catharanthus roseus in streptozotocin-induced diabetic rats. J For Res 27(1):167–174

    Article  CAS  Google Scholar 

  • Zhu X, Cheng YQ, Du L et al (2015) Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Res 29(2):295–302

    Article  CAS  PubMed  Google Scholar 

  • Zimmet P, Alberti KG, Magliano DJ et al (2016) Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol 12(10):616–622

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the kind help and support received from Phytochemical Society of Europe (PSE) and Pierre Fabre Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srijit Das.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teoh, S.L., Das, S. Phytochemicals and their effective role in the treatment of diabetes mellitus: a short review. Phytochem Rev 17, 1111–1128 (2018). https://doi.org/10.1007/s11101-018-9575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9575-z

Keywords

Navigation