Skip to main content

Advertisement

Log in

Secondary metabolites from species of the biocontrol agent Trichoderma

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Trichoderma species are free-living fungi that are highly interactive in root, soil and foliar environments and have been used successfully in field trials to control many crop pathogens. Structural and biological studies of the metabolites isolated from Trichoderma species are reviewed. This review, encompassing all the literature in this field up to the present and in which 269 references are cited, also includes a detailed study of the biological activity of the metabolites, especially the role of these metabolites in biological control mechanisms. Some aspects of the biosynthesis of these metabolites and related compounds are likewise discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Abe N, Murata T, Hirota A (1998a) Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci Biotechnol Biochem 62:661–666

    CAS  Google Scholar 

  • Abe N, Murata T, Hirota A (1998b) Novel oxidized sorbicillin dimers with 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity from a fungus. Biosci Biotechnol Biochem 62:2120–2126

    CAS  Google Scholar 

  • Abe N, Murata T, Yamamoto K, Hirota A (1999) Bisorbibetanone, a novel oxidized sorbicillin dimer, with 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity from a fungus. Tetrahedron Lett 40:5203–5206

    CAS  Google Scholar 

  • Abe N, Yamamoto K, Hirota A (2000a) Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690. Biosci Biotechnol Biochem 64:620–622

    CAS  Google Scholar 

  • Abe N, Sugimoto O, Tanji K, Hirota A (2000b) Identification of the quinol metabolite “sorbicillinol”, a key intermediate postulated in bisorbicillinoid biosynthesis. J Am Chem Soc 122:12606–12607

    CAS  Google Scholar 

  • Abe N, Sugimoto O, Arakawa T, Tanji K, Hirota A (2001) Sorbicillinol, a key intermediate of bisorbicillinoid biosynthesis in Trichoderma sp. USF-2690. Biosci Biotechnol Biochem 65:2271–2279

    PubMed  CAS  Google Scholar 

  • Abe N, Arakawa T, Hirota A (2002a) The biosynthesis of bisvertinolone: evidence for oxosorbicillinol as a direct precursor. Chem Commun 3:204–205

    Google Scholar 

  • Abe N, Arakawa T, Yamamoto K, Hirota A (2002b) Biosynthesis of bisorbicillinoid in Trichoderma sp. USF-2690; evidence for the biosynthetic pathway, via sorbicillinol, of sorbicillin, bisorbicillinol, bisorbibutenolide, and bisorbicillinolide. Biosci Biotechnol Biochem 66:2090–2099

    CAS  Google Scholar 

  • Abrahamsson S, Nilsson B (1966) Molecular structure of trichodermin. Acta Chem Scand 20:1044–1052

    CAS  Google Scholar 

  • Adachi T, Aoki H, Osawa T, Namiki M, Yamane T, Ashida T (1983) Structure of trichodermaol, antibacterial substance produced in combined culture of Trichoderma sp. with Fusarium oxysporum or Fusarium solani. Chem Lett 6:923–926

    Google Scholar 

  • Adams PM, Hanson JR (1972) Sesquiterpenoid metabolites of Trichoderma polysporum and T. sporulosum. Phytochemistry 11:423

    CAS  Google Scholar 

  • Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 72:43–46

    PubMed  CAS  Google Scholar 

  • Aldridge DC, Turner WB, Geddes AJ, Sheldrick B (1975) Demethoxyviridin and demethoxyviridiol, new fungal metabolites. J Chem Soc Perkin Trans 1(10):943–945

    Google Scholar 

  • Ali S, Watson MS, Osborne RH (2004) The stimulant cathartic, emodin, contracts the rat isolated ileum by triggering release of endogenous acetylcholine. Auton Autacoid Pharmacol 24:103–105

    PubMed  CAS  Google Scholar 

  • Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402

    CAS  Google Scholar 

  • Amagata T, Usami Y, Minoura K, Ito T, Numata A (1998) Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot 51:33–40

    PubMed  CAS  Google Scholar 

  • Anderson EA, Alexanian EJ, Sorensen EJ (2004) Synthesis of the furanosteroidal antibiotic viridin. Angew Chem Int Ed 43:1998–2001

    CAS  Google Scholar 

  • Andrade R, Ayer WA, Mebe PP (1992) The metabolites of Trichoderma longibrachiatum. Part 1. Isolation of the metabolites and the structure of trichodimerol. Can J Chem 70:2526–2535

    CAS  Google Scholar 

  • Andrade R, Ayer WA, Trifonov LS (1996) The metabolites of Trichoderma longibrachiatum. Part II. The structures of trichodermolide and sorbiquinol. Can J Chem 74:371–379

    CAS  Google Scholar 

  • Andrade R, Ayer WA, Trifonov LS (1997) The metabolites of Trichoderma longibrachiatum. III. Two new tetronic acids: 5-hydroxyvertinolide and bislongiquinolide. Aust J Chem 50:255–257

    CAS  Google Scholar 

  • Astudillo L, Schmeda-Hirschmann G, Soto R, Sandoval C, Sfonso C, Gonzalez MJ, Kijjoa A (2000) Acetophenone derivatives from Chilean isolated of Trichoderma pseudokoningii Rifai. World J Microbiol Biotechnol 16:585–587

    CAS  Google Scholar 

  • Augustiniak H, Forche E, Reichenbach H, Wray V, Graefe U, Hoefle G (1991) Isolation and structure elucidation of ergokonin A and B; two new antifungal sterol antibiotics from Trichoderma koningii. Liebigs Ann Chem 4:361–366

    Google Scholar 

  • Auvin-Guette C, Rebuffat S, Prigent Y, Bodo B (1992) Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114:2170–2174

    CAS  Google Scholar 

  • Auvin-Guette C, Rebuffat S, Vuidepot I, Massias M, Bodo B (1993) Structural elucidation of trikoningins KA and KB, peptaibols from Trichoderma koningii. J Chem Soc Perkin Trans 1(2):249–255

    Google Scholar 

  • Baldwin JE, Adlington RM, Chondrogianni J, Edenborough MS, Keeping JW, Ziegler CB (1985) Structure and synthesis of new cyclopentenyl isonitriles from Trichoderma hamatum (Bon.) Bain. aggr. HLX 1379. J Chem Soc Chem Commun 12:816–817

    Google Scholar 

  • Baldwin JE, Aldous DJ, Chan C, Harwood LM, O’Neil IA, Peach JM (1989) The total synthesis of (±)-isonitrin B (deoxytrichoviridin). Synlett 1:9–14

    Google Scholar 

  • Baldwin JE, O’Neil IA, Russell AT (1991) Isonitrin A: revision of the structure and total synthesis in racemic form. Synlett 8:551–552

    Google Scholar 

  • Baldwin JE, Adlington RM, O’Neil IA, Russell AT, Smith ML (1996) The total synthesis of (±)-trichoviridin. Chem Commun 1:41–42

    Google Scholar 

  • Bamburg JR, Strong FM (1969) Mycotoxins of the trichothecane family produced by Fusarium tricinctum and Trichoderma lignorum. Phytochemistry 8:2405–2410

    CAS  Google Scholar 

  • Barnes-Seeman D, Corey EJ (1999) A two-step total synthesis of the natural pentacycle trichodimerol, a novel inhibitor of TNF-alpha production. Org Lett 1:1503–1504

    PubMed  CAS  Google Scholar 

  • Berestetskii OA, Patyka VF, Nadkernichnyi SP (1976) Phytotoxic properties of fungi of the Trichoderma Pers. Genus. Vopr. Ekol. Fiziol. Mikroorg., Ispol’z. Sel’sk. Khoz.: 56–60 (Chem. Abstr. 1978, 88:148647)

  • Berg A, Grigoriev PA, Degenkolb T, Neuhof T, Haertl A, Schlegel B, Graefe U (2003) Isolation, structure elucidation and biological activities of trichofumins A, B, C and D, new 11 and 13mer peptaibols from Trichoderma sp. HKI 0276. J Pept Sci 9:810–816

    PubMed  CAS  Google Scholar 

  • Berg A, Wangun HVK, Nkengfack AE, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319

    PubMed  CAS  Google Scholar 

  • Bernillon J, Favre-Bonvin J, Pommier MT, Arpin N (1989) First isolation of (+)-epipentenomycin I from Peziza sp. carpophores. J Antibiot 42:1430–1432

    PubMed  CAS  Google Scholar 

  • Betina V, Kubela Ŝ (1987) Uncoupling effect on fungal hydroxyanthraquinones on mitochondrial oxidative phosphorylation. Chem Biol Interact 62:179–186

    PubMed  CAS  Google Scholar 

  • Betina V, Sedmera P, Vokoun J, Podojil M (1986) Anthraquinone pigments from a conidiating mutant of Trichoderma viride. Experientia 42:196–197

    CAS  Google Scholar 

  • Blight MM, Grove JF (1986) Viridin. Part 8. Structures of the analogs virone and wortmannolone. J Chem Soc Perkin Trans 1(7):1317–1322

    Google Scholar 

  • Boros C, Dix A, Katz B, Vasina Y, Pearce C (2003) Isolation and identification of cissetin, a setin-like antibiotic with a novel cis-octalin ring fusion. J Antibiot 56:862–865

    PubMed  CAS  Google Scholar 

  • Boyd RK, McAlees AJ, Taylor A, Walter JA (1991) Isolation of new isocyanide metabolites of Trichoderma hamatum as their (η5-pentamethylcyclopentadienyl)- or (η5-ethyltetramethylcyclopentadienyl)bis(μ-thiocyanato)rhodium complexes. J Chem Soc Perkin Trans 1(6):1461–1465

    Google Scholar 

  • Brasier CM (1975) Stimulation of sex organ formation in Phytophthora by antagonistic species of Trichoderma. I. The effect in vitro. New Phytol 74:183–194

    Google Scholar 

  • Brewer D, Gabe EJ, Hanson AW, Taylor A, Keeping JW, Thaller V, Das BC (1979) Isonitrile acids from cultures of the fungus Trichoderma hamatum (Bon.) Bain. aggr., x-ray structure. J Chem Soc Chem Commun 23:1061–1062

    Google Scholar 

  • Brewer D, Feicht A, Taylor A, Keeping JW, Taha AA, Thaller V (1982) Ovine ill-thrift in Nova Scotia. 9. Production of experimental quantities of isocyanide metabolites of Trichoderma hamatum. Can J Microbiol 28:1252–1260

    PubMed  CAS  Google Scholar 

  • Brewer D, Calder FW, Jones GA, Tanguay D, Taylor A (1986) Effect of nickelous and other metal ions on the inhibition of rumen bacterial metabolism by 3-(3-isocyanocyclopent-2-enylidene)propionic acid and related isocyanides. Appl Environ Microbiol 51:138–142

    PubMed  CAS  Google Scholar 

  • Brewer D, Mason FG, Taylor A (1987) The production of alamethicins by Trichoderma spp. Can J Microbiol 33:619–625

    PubMed  CAS  Google Scholar 

  • Brewer D, Parkinson VO, Taylor A (1990) A note on the antibacterial properties of 3-(3’-isocyanocyclopent-2’-enylidene)propionic acid in the ovine rumen. J Appl Bacteriol 69:701–704

    PubMed  CAS  Google Scholar 

  • Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668

    CAS  Google Scholar 

  • Brian PW, McGowan JC (1945) Viridin. A highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145

    CAS  Google Scholar 

  • Brian PW, Curtis PJ, Hemming HG, Norris GLF (1957) Wortmannin, an antibiotic produced by Penicillium wortmanni. Brit Mycol Soc Trans 40:365–368

    CAS  Google Scholar 

  • Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH (1976) Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc Perkin Trans 1(11):1165–1170

    Google Scholar 

  • Brueckner H, Graf H, Bokel M (1984) Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Experientia 40:1189–1197

    CAS  Google Scholar 

  • Brueckner H, Koenig WA, Aydin M, Jung G (1985) Trichotoxin A40. Purification by counter-current distribution and sequencing of isolated fragments. Biochim Biophys Acta 827:51–62

    CAS  Google Scholar 

  • Burmeister HR (1974) Antibiotic equisetin. US Pat. Appl. 467548, 6 May 1974

  • Burton HS (1950) Antibiotics from Aspergillus melleus. Nature 165:274–275

    PubMed  CAS  Google Scholar 

  • Cane DE, Sohng JK (1994) Inhibition of glyceraldehyde-3-phosphate dehydrogenase by pentalenolactone. 2. Identification of the site of alkylation by tetrahydropentalenolactone. Biochemistry 33:6524–6530

    PubMed  CAS  Google Scholar 

  • Capon RJ, Ratnayake R, Stewart M, Lacey E, Tennant S, Gill JH (2005) Aspergillazines A-E: novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis. Org Biomol Chem 3:123–129

    PubMed  CAS  Google Scholar 

  • Cardoza RE, Hermosa MR, Vizcaino JA, Sanz L, Monte E, Gutierrez S (2005) Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. In: Mellado-Durán E, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, India, p 207

    Google Scholar 

  • Chang CWJ (2000) Naturally occurring isocyano/isothiocyanato and related compounds. Prog Chem Org Nat Prod 80:1–186

    CAS  Google Scholar 

  • Choi SU, Choi EJ, Kim KH, Kim NY, Kwon BM, Kim SU, Bok SH, Lee SY, Lee CO (1996) Cytotoxicity of trichothecenes to human solid tumor cells in vitro. Arch Pharmacol Res 19:6–11

    CAS  Google Scholar 

  • Chukwujekwu JC, Coombes PH, Mulholland DA, van Staden J (2006). Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. J Bot 72:295–297

    CAS  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:503–513

    CAS  Google Scholar 

  • Claydon N, Hanson JR, Truneh A, Avent AG (1991) Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry 30:3802–3803

    CAS  Google Scholar 

  • Coats JH, Meyer CE, Pyke TR (1971) Antibiotic dermadin. US Patent 3627882, 14 Dec 1971

  • Cole RJ, Kirksey JW, Springer JP, Clardy J, Cutler HG, Garren KH (1975) Desmethoxyviridiol, a new toxin from Nodulisporium hinnuleum. Phytochemistry 14:1429–1432

    CAS  Google Scholar 

  • Collins RP, Halim AF (1972) Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem 20:437–438

    CAS  Google Scholar 

  • Corley DG, Miller-Wideman M, Durley RC (1994) Isolation and structure of harzianum A: a new trichothecene from Trichoderma harzianum. J Nat Prod 57:422–425

    PubMed  CAS  Google Scholar 

  • Cutler SJ, Cutler HG (1999) Biologically active natural products: pharmaceuticals. CRC Press, New York

    Google Scholar 

  • Cutler HG, Jacyno JM (1991) Biological activity of (-)-harzianopyridone isolated from Trichoderma harzianum. Agric Biol Chem 55:2629–2631

    CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin A: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611

    CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Yagen B, Arrendale RF, Jacyno JM, Cole PD, Cox RH (1991a) Koninginin B: a biologically active congener of koninginin A from Trichoderma koningii. J Agric Food Chem 39:977–980

    CAS  Google Scholar 

  • Cutler HG, Jacyno JM, Phillips RS, vonTersch RL, Cole PD, Montemurro N (1991b) Cyclonerodiol from a novel source, Trichoderma koningii: plant growth regulatory activity. Agric Biol Chem 55:243–244

    CAS  Google Scholar 

  • Cutler HG, Cutler SJ, Ross SA, El Sayed K, Dugan FM, Bartlett MG, Hill AA, Hill RA, Parker SR (1999) Koninginin G, a new metabolite from Trichoderma aureoviride. J Nat Prod 62:137–139

    PubMed  CAS  Google Scholar 

  • D’Mello JPF, Porter JK, Macdonald AMC, Placonta CM (1997) Fusarium mycotoxins. In: D’Mello JPF (ed) Handbook of plant and fungal toxicants. CRC Press, New York, p 287

    Google Scholar 

  • De Stefano S, Nicoletti R (1999) Pachybasin and chrysophanol, two anthraquinones produced by the fungus Trichoderma aureoviride. Il Tabacco 7:21–24

    Google Scholar 

  • Dickinson JM, Hanson JR, Hitchcock PB, Claydon N (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1(11):1885–1887

    Google Scholar 

  • Dodge JA, Sato M, Vlahos CJ (1995) Inhibition of phosphatidylinositol 3-kinase with viridin and analogs thereof. Eur. Patent Appl. 648492, 19 Apr 1995

  • Donnelly DMX, Sheridan MH (1986) Anthraquinones from Trichoderma polysporum. Phytochemistry 25:2303–2304

    CAS  Google Scholar 

  • Dunlop RW, Simon A, Sivasithamparam K, Ghisalberti EL (1989) An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J Nat Prod 52:67–74

    CAS  Google Scholar 

  • Edenborough MS, Herbert RB (1988) Naturally occurring isocyanides. Nat Prod Rep 5:229–245

    PubMed  CAS  Google Scholar 

  • Ehrlich KC, Daigle KW (1987) Protein synthesis inhibition of 8-oxo-12,13-epoxytrichothecenes. Biochim Biophys Acta Gen Subj 923:206–213

    CAS  Google Scholar 

  • El Hajji M, Rebuffat S, Lecommandeur D, Bodo B (1987) Isolation and sequence determination of trichorzianines A antifungal peptides from Trichoderma harzianum. Int J Pept Protein Res 29:207–215

    Article  PubMed  Google Scholar 

  • Elliott JD, Hetmanski M, Palfreyman MN, Purcell N, Stoodley RJ (1983) Syntheses of (±)- and (-)-O-pentenomycin I. Tetrahedron Lett 24:965–968

    CAS  Google Scholar 

  • Endo A (1985) Compactin (ML-236B) and related compounds as potential cholesterol-lowering agents that inhibit HMG-CoA reductase. J Med Chem 28:401–405

    PubMed  CAS  Google Scholar 

  • Endo A, Hasumi K, Sakai K, Kanbe T (1985) Specific inhibition of glyceraldehyde-3-phosphate dehydrogenase by koningic acid (heptelidic acid). J Antibiot 38:920–925

    PubMed  CAS  Google Scholar 

  • Endo A, Hasumi K, Yamada A, Shimoda R, Takeshima H (1986) The synthesis of compactin (ML-236B) and monacolin K in fungi. J Antibiot 39:1609–1610

    PubMed  CAS  Google Scholar 

  • Esumi T, Iwabuchi Y, Irie H, Hatakeyama S (1998) Synthesis of viridiofungin A trimethyl ester and determination of the absolute structure of viridiofungin A. Tetrahedron Lett 39:877–880

    CAS  Google Scholar 

  • Evidente A, Randazzo G, Ballio A (1986) Structure determination of seiridin and isoseiridin, phytotoxic butenolides from culture filtrate of Seiridium cardinale. J Nat Prod 49:593–601

    CAS  Google Scholar 

  • Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960

    PubMed  CAS  Google Scholar 

  • Faull JL, Graeme-Cook KA, Pilkington BL (1994) Production of an isonitrile antibiotic by an UV-induced mutant of Trichoderma harzianum. Phytochemistry 36:1273–1276

    PubMed  CAS  Google Scholar 

  • Fujimoto H, Satoh Y, Yamaguchi K, Yamazaki M (1998) Monoamine oxidase inhibitory constituents from Anixiella micropertusa. Chem Pharm Bull 46:1506–1510

    CAS  Google Scholar 

  • Fujita T, Takaishi Y, Okamura A, Fujita E, Fuji K, Hiratsuka N, Komatsu M, Arita I (1981) New peptide antibiotics, trichopolyns I and II, from Trichoderma polysporum. J Chem Soc Chem Commun 12:585–587

    Google Scholar 

  • Fujita T, Takaishi Y, Takeda Y, Fujiyama T, Nishi T (1984) Fungal metabolites. II. Structural elucidation of minor metabolites, valinotricin, cyclonerodiol oxide, and epicyclonerodiol oxide, from Trichoderma polysporum. Chem Pharm Bull 32:4419–4425

    CAS  Google Scholar 

  • Fujita T, Wada S, Iida A, Nishimura T, Kanai M, Toyama N (1994) Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins-I and -II, from Trichoderma viride. Chem Pharm Bull 42:489–494

    PubMed  CAS  Google Scholar 

  • Fujiwara A, Okuda T, Masuda S, Shiomi Y, Miyamoto C, Sekine Y, Tazoe M, Fujiwara M (1982) Isonitrile antibiotics, a new class of antibiotics with an isonitrile group. I. Fermentation, isolation and characterization of isonitrile antibiotics. Agric Biol Chem 46:1803–1809

    CAS  Google Scholar 

  • Gallos JK, Damianou KC, Dellios CC (2001) A new total synthesis of pentenomycin. Tetrahedron Lett 42:5769–5771

    CAS  Google Scholar 

  • Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66:423–426

    PubMed  CAS  Google Scholar 

  • Ghisalberti EL (2002) Anti-infective agents produced by the hyphomycetes general Trichoderma and Glioclaudium. Curr Med Cem 1:343–374

    CAS  Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804

    PubMed  CAS  Google Scholar 

  • Ghisalberti EL, Hockless DCR, Rowland C, White AH (1992) Harziandione, a new class of diterpene from Trichoderma harzianum. J Nat Prod 55:1690–1694

    CAS  Google Scholar 

  • Gloer JB (1997) Environmental and microbial relationships. In: Wicklow DT (ed) The mycota, vol IV. Söderström Springer-Verlag, Berlin, p 249

    Google Scholar 

  • Godtfredsen WO, Vangedal S (1964) Trichodermin, a new antibiotic related to trichothecin. Proc Chem Soc (June):188–189

  • Godtfredsen WO, Vangedal S (1965) Trichodermin, a new sesquiterpene antibiotic. Acta Chem Scand 19:1088–1102

    PubMed  CAS  Google Scholar 

  • Golder WS, Watson TR (1980) Lanosterol derivatives as precursors in the biosynthesis of viridin. Part 1. J Chem Soc Perkin Trans 1(2):422–425

    Google Scholar 

  • Goldstein JL, Helgeson JAS, Brown MS (1979) Inhibition of cholesterol synthesis with compactin renders growth of cultured cells dependent on the low density lipoprotein receptor. J Biol Chem 254:5403–5409

    PubMed  CAS  Google Scholar 

  • Gottasová R, Betina V, Lesko J, Hrdlickova L, Chovanec P (1998) Secondary metabolites of a brown mutant of Trichoderma viride. Their isolation, purification and biological activities. Chem Pap 52:569

    Google Scholar 

  • Graefe U, Ihn W, Schlegel B, Hoefle G, Augustiniak H, Sandor P (1991) Structure of ergokonin C, a new carboxysterol antifungal antibiotic from a Tolypocladium inflatum mutant. Pharmazie 46:613–614

    CAS  Google Scholar 

  • Grove JF (1988) Non-macrocyclic trichothecenes. Nat Prod Rep 5:187–209

    PubMed  CAS  Google Scholar 

  • Grove JF (1993) Macrocyclic trichothecenes. Nat Prod Rep 10:429–448

    CAS  Google Scholar 

  • Grove JF (1996) Non-macrocyclic trichothecenes. Part 2. Prog Chem Org Nat Prod 69:1–70

    CAS  Google Scholar 

  • Haefliger W, Hauser D (1973) Isolation and structure elucidation of 11-desacetoxywortmannin. Helv Chim Acta 56:2901–2904

    PubMed  CAS  Google Scholar 

  • Haggag WM, Abo-Sedera SA (2005) Characteristics of three Trichoderma species in peanut haulms compost involved in biocontrol of cumin wilt disease. Int J Agric Biol 7:222–229

    CAS  Google Scholar 

  • Hanson JR (1995) The viridin family of steroidal antibiotics. Nat Prod Rep 12:381–384

    PubMed  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    PubMed  CAS  Google Scholar 

  • Harris GH, Jones ETT, Meinz MS, Nallin-Omstead M, Helms GL, Bills GF, Zink D, Wilson KE (1993) Isolation and structure elucidation of viridiofungins A, B and C. Tetrahedron Lett 34:5235–5238

    CAS  Google Scholar 

  • Harris GH, Dufresne C, Joshua H, Koch LA, Zink DL, Salmon PM, Goklen KE, Kurtz MM, Rew DJ, Bergstrom JD, Wilson KE (1995) Isolation, structure determination and squalene synthase activity of L-731,120 and L-731,128, alkyl citrate analogs of zaragozic acids A and B. Bioorg Med Chem Lett 5:2403–2408

    CAS  Google Scholar 

  • Hashimoto R, Takahashi S, Hamano K, Nakagawa A (1995) A new melanin biosynthesis inhibitor, melanoxadin from fungal metabolite by using the larval haemolymph of the silkworm, Bombyx mori. J Antibiot 48:1052–1054

    PubMed  CAS  Google Scholar 

  • Hebbar KP, Lumsden RD (1998) Joint action of microbials for disease control. In: Menn JJ, Hall FR (eds) Biopesticides: use and delivery. Humana Press, Inc., Totawa, p 103

    Google Scholar 

  • Hetmanski M, Purcell N, Stoodley RJ, Palfreyman MN (1984) Studies related to cyclopentanoid natural products. Part 3. Synthesis of pentenomycin and its racemate. J Chem Soc Perkin Trans 1(9):2089–2096

    Google Scholar 

  • Hill RA, Cutler HG, Parker SR (1995) Trichoderma and metabolites as control agents for microbial plant diseases. PCT Int Appl 9520879, 10 Aug 1995

    Google Scholar 

  • Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1994) Effect of sterol biosynthesis inhibitors on phytotoxin (viridiol) production by Gliocladium virens in culture. Phytopathology 84:969–972

    CAS  Google Scholar 

  • Huang Q, Tezuka Y, Hatanaka Y, Kikuchi T, Nishi A, Tubaki K (1995a) Studies on metabolites of mycoparasitic fungi. III. New sesquiterpene alcohol from Trichoderma koningii. Chem Pharm Bull 43:1035–1038

    CAS  Google Scholar 

  • Huang Q, Tezuka Y, Kikuchi T, Nishi A, Tubaki K, Tanaka K (1995b) Studies on metabolites of mycoparasitic fungi. II. Metabolites of Trichoderma koningii. Chem Pharm Bull 43:223–239

    CAS  Google Scholar 

  • Huang Q, Shen HM, Shui G, Wenk M, Ong CN (2006) Emodin inhibits tumor cell adhesion through disruption of the membrane lipid raft-associated integrin signaling pathway. Cancer Res 66:5807–5815

    PubMed  CAS  Google Scholar 

  • Hussain SA, Noorani R, Qureshi IH (1975) Microbial chemistry. Part I. Isolation and characterization of gliotoxin, ergosterol, palmitic acid and mannitol – metabolic products of Trichoderma hamatum Bainier. Pak J Sci Ind Res 18:221–223

    CAS  Google Scholar 

  • Hussein HS, Brasel JM (2001) Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology 167:101–134

    PubMed  CAS  Google Scholar 

  • Iida A, Uesato S, Shingu T, Nagaoka Y, Kuroda Y, Fujita T (1993) Fungal metabolites. Part 7. Solution structure of an antibiotic peptide, trichosporin B-V, from Trichoderma polysporum. J Chem Soc Perkin Trans 1(3):375–379

    Google Scholar 

  • Iida A, Sanekata M, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Rudewicz PJ, Tachikawa E (1994) Fungal metabolites. XVI. Structures of new peptaibols, trichokindins I-VII, from the fungus Trichoderma harzianum. Chem Pharm Bull 42:1070–1075

    PubMed  CAS  Google Scholar 

  • Iida A, Sanekata M, Wada S, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Asami K (1995) Fungal metabolites. XVIII. New membrane-modifying peptides, trichorozins I-IV, from the fungus Trichoderma harzianum. Chem Pharm Bull 43:392–397

    PubMed  CAS  Google Scholar 

  • Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, Arai M (1980) A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot 33:468–473

    PubMed  CAS  Google Scholar 

  • Jakobisiak M, Golab J (2003) Potential antitumor effects of statins (review). Int J Oncol 23:1055

    PubMed  CAS  Google Scholar 

  • Jansen R, Höfle G (1983) Revised stereochemistry of piericidin A1. Tetrahedron Lett 24:5485–5486

    CAS  Google Scholar 

  • Jaworski A, Kirschbaum J, Bruckner H (1999) Structures of trichovirins II, peptaibol antibiotics from the mold Trichoderma viride NRRL 5243. J Pept Sci 5:341–351

    PubMed  CAS  Google Scholar 

  • Jayasuriya H, Koonchanok NM, Geahlen RL, McLaughlin JL, Chang CJ (1992) Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod 55:696–698

    PubMed  CAS  Google Scholar 

  • Jones PH (1990) Lovastatin and simvastatin prevention studies. Am J Cardiol 66:39B–43B

    PubMed  CAS  Google Scholar 

  • Jones RW, Pettit RE (1987) Variation in sensitivity among anastomosis groups of Rhizoctonia solani to the antibiotic gliotoxin. Plant Dis 71:34–36

    CAS  Google Scholar 

  • Kamal A, Akhtar R, Qureshi AA (1971) Biochemistry of microorganisms. XX. 2,5-Dimethoxybenzoquinone, tartronic acid, itaconic acid, succinic acid, pyrocalciferol, epifriedlinol, lanosta-7,9(11), 24-triene-3-b-21-diol, trichodermene-A, methyl 2,4,6-octatrienecarboxylate, cordycepic acid, Trichoderma metabolic products. Pak J Sci Ind Res 14:71–78

    CAS  Google Scholar 

  • Kato M, Sakai K, Endo A (1992) Koningic acid (heptelidic acid) inhibition of glyceraldehyde-3-phosphate dehydrogenases from various sources. Biochim Biophys Acta 1120:113–116

    PubMed  CAS  Google Scholar 

  • Kawada M, Yoshimoto Y, Kumagai H, Someno T, Momose I, Kawamura N, Isshiki K, Ikeda D (2004) PP2A inhibitors, harzianic acid and related compounds produced by fungal strain F-1531. J Antibiot 57:235–237

    PubMed  CAS  Google Scholar 

  • Kawashima J, Ito F, Kato T, Niwano M, Koshino H, Uramoto M (1994) Antitumor activity of heptelidic acid chlorohydrin. J Antibiot 47:1562–1563

    PubMed  CAS  Google Scholar 

  • Kirby GW, Robins DJ (1980) The biosynthesis of gliotoxin and related epipolythiodioxopiperazines. Biosynth Mycotoxins: Study Second Metab 301–326

  • Kishimoto N, Sugihara S, Mochida K, Fujita T (2005) In vitro antifungal and antiviral activities of γ- and δ-lactone analogs utilized as food flavoring. Biocontrol Sci 10:31–36

    CAS  Google Scholar 

  • Kobayashi M, Uehara H, Matsunami K, Aoki S, Kitagawa I (1993) Trichoharzin, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Mycale cecilia. Tetrahedron Lett 34:7925–7928

    CAS  Google Scholar 

  • Kono K, Tanaka M, Ono Y, Hosoya T, Ogita T, Kohama T (2001) S-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J Antibiot 54:415–420

    PubMed  CAS  Google Scholar 

  • Kontani M, Sakagami Y, Marumo S (1994) First β-1,6-glucan biosynthesis inhibitor, bisvertinolone isolated from fungus, Acremonium strictum and its absolute stereochemistry. Tetrahedron Lett 35:2577–2580

    CAS  Google Scholar 

  • Krause C, Kirschbaum J, Jung G, Brueckner H (2006) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride J Pept Sci 12:321–327

    PubMed  CAS  Google Scholar 

  • Krupke OA, Castle AJ, Rinker DL (2003) The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol Res 107:1467–1475

    PubMed  Google Scholar 

  • Kubicek CP, Harman GE (eds) (1998) Trichoderma and Glioclaudium, vols 1 and 2. Taylor & Francis Ltd, London

  • Kumagai H, Nishida H, Imamura N, Tomoda H, Omura S, Bordner J (1990) The structures of atpenins A4, A5 and B, new antifungal antibiotics produced by Penicillium sp. J Antibiot 43:1553–1558

    PubMed  CAS  Google Scholar 

  • Kumar A, Dhawan S, Aggarwal BB (1998) Emodin (3-methyl-1,6,8-trihydroxy-anthraquinone) inhibits TNF-induced NF-kB activation, IkB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 17:913–918

    PubMed  CAS  Google Scholar 

  • Kumeda Y, Asao T, Iida A, Wada S, Futami S, Fujita T (1994) Effects of ergokonin A produced by Trichoderma viride on the growth and morphological development of fungi. Bokin Bobai 22:663–670

    CAS  Google Scholar 

  • Leclerc G, Goulard C, Prigent Y, Bodo B, Wroblewski H, Rebuffat S (2001) Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma longibrachiatum. J Nat Prod 64:164–170

    PubMed  CAS  Google Scholar 

  • Lee SH, Hensens OD, Helms GL, Liesch JM, Zink DL, Giacobbe RA, Bills GF, Stevens-Miles S, Garcia ML, Schmalhofer WA, McManus OB, Kaczorowski GJ (1995a) L-735,334, a novel sesquiterpenoid potassium channel-agonist from Trichoderma virens. J Nat Prod 58:1822–1828

    CAS  Google Scholar 

  • Lee CH, Koshino H, Chung MC, Lee HJ, Kho YH (1995b) MR304A, a new melanin synthesis inhibitor produced by Trichoderma harzianum. J Antibiot 48:1168–1170

    CAS  Google Scholar 

  • Lee CH, Chung MC, Lee HJ, Bae KS, Kho YH (1997a) MR566A and MR566B, new melanin synthesis inhibitors produced by Trichoderma harzianum. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 50:469–473

    CAS  Google Scholar 

  • Lee CH, Koshino H, Chung MC, Lee HJ, Hong JK, Yoo JS, Kho YH (1997b) MR566A and MR566B, new melanin synthesis inhibitors produced by Trichoderma harzianum. II. Physico-chemical properties and structural elucidation. J Antibiot 50:474–478

    CAS  Google Scholar 

  • Lee HB, Kim Y, Jin HZ, Lee JJ, Kim CJ, Park JY, Jung HS (2005) A new Hypocrea strain producing harzianum A cytotoxic to tumour cell lines. Lett Appl Microbiol 40:497–503

    PubMed  CAS  Google Scholar 

  • Liu G, Wang Z (2001) Total synthesis of koninginin D, B and E. Synthesis 1:119–127

    Google Scholar 

  • Liu R, Gu QQ, Zhu WM, Cui CB, Fan GT (2005a) Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine-derived fungus Spicaria elegans. Arch Pharmacol Res 28:1042–1046

    CAS  Google Scholar 

  • Liu W, Gu Q, Zhu W, Cui C, Fan G (2005b) Two new benzoquinone derivatives and two new bisorbicillinoids were isolated from a marine-derived fungus Penicillium terrestre. J Antibiot 58:441–446

    CAS  Google Scholar 

  • Macias FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–1200

    PubMed  CAS  Google Scholar 

  • Mandala SM, Thornton RA, Frommer BR, Dreikorn S, Kurtz MB (1997) Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot 50:339–343

    PubMed  CAS  Google Scholar 

  • Manyu SKK (1980) The physiologically active substance SC2051. Jpn Kokai Tokkyo Koho 80:54,897 (Chem. Abstr. 1980, 93:112329)

  • Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus. Z Naturforsch C: J Biosci 57:465–470

    CAS  Google Scholar 

  • Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2003). Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry 62:715–721

    PubMed  CAS  Google Scholar 

  • Mazzucco CE, Warr G (1996) Trichodimerol (BMS-182123) inhibits lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells. J Leukocyte Biol 60:271–277

    PubMed  CAS  Google Scholar 

  • McKean C, Tang L, Billam M, Tang M, Theodorakis CW, Kendall RJ, Wang JS (2006) Comparative acute and combinative toxicity of aflatoxin B1 and T-2 toxin in animals and immortalized human cell lines. J Appl Toxicol 26:139–147

    PubMed  CAS  Google Scholar 

  • Meinz MS, Pelaez F, Omstead MN, Milligan JA, Diez MT, Onishi JC, Bergstrom JA, Jenkins RF, Harris GH, Jones ETT, Huang L, Kong YL, Lingham RB, Zink D (1993) Cholesterol-lowering agents, their manufacture with Trichoderma, and their use as fungicides or as medicines. Eur. Pat. Appl. 526936, 10 Feb 1993

  • Mereyala HB, Joe M, Gadikota RR (2000) Synthesis of harzialactone A and its isomers from D-glucose and assignment of absolute stereochemistry. Tetrahedron: Asymmetry 11:4071–4081

    CAS  Google Scholar 

  • Meyer CE (1966) U-21,963, a new antibiotic. II. Isolation and characterization. Appl Microbiol 14:511–512

    PubMed  CAS  Google Scholar 

  • Meyer CE, Reusser F (1967) A polypeptide antibacterial agent from Trichoderma viride. Experientia 23:85–86

    PubMed  CAS  Google Scholar 

  • Michael AP, Grace EJ, Kotiw M, Barrow RA (2003) Isochromophilone IX, a novel GABA-containing metabolite isolated from a cultured fungus, Penicillium sp. Aust J Chem 56:13–15

    CAS  Google Scholar 

  • Mihara T, Iida A, Akimoto N, Fujita T, Takaishi Y, Inoue K, Kushimoto S (1994) Structures of antibiotic peptides, trichopolyns, from the fungus Trichoderma polysporum. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 36:713–720

    Google Scholar 

  • Moffatt JS, Bu’Lock JD, Yuen TH (1969) Viridiol, a steroid-like product from Trichoderma viride. J Chem Soc Chem Commun 14:839

    Google Scholar 

  • Mohamed-Benkada M, Montagu M, Biard J, Mondeguer F, Verite P, Dalgalarrondo M, Bissett J, Pouchus YF (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun Mass Spectrom 20:1176–1180

    PubMed  CAS  Google Scholar 

  • Mori K, Bando M, Abe K (2002) Determination of the stereochemistry of (-)-koninginin A by an X-ray analysis of its synthetic sample. Biosci Biotechnol Biochem 66:1779–1781

    PubMed  CAS  Google Scholar 

  • Morokuma K, Takahashi K, Ishihara J, Hatakeyama S (2005) Total synthesis of viridiofungin A. Chem Commun 17:2265–2267

    Google Scholar 

  • Mukhopadhyay T, Roy K, Sawant SN, Deshmukh SK, Ganguli BN, Fehlhaber HW (1996) On an unstable antifungal metabolite from Trichoderma koningii. Isolation and structure elucidation of a new cyclopentenone derivative (3-dimethylamino-5-hydroxy-5-vinyl-2-cyclopenten-1-one). J Antibiot 49:210–211

    PubMed  CAS  Google Scholar 

  • Nakano H, Hara M, Mejiro T, Ando K, Saito Y, Morimoto M (1990) DC1149B, DC1149R, and their manufacture with Trichoderma. Jpn. Kokai Tokkyo Koho, JP Patent 02218686, 31 Aug 1990

  • New AP, Eckers C, Haskins NJ, Neville WA, Elson S, Hueso-Rodriguez JA, Rivera-Sagredo A (1996) Structures of polysporins A-D, four new peptaibols isolated from Trichoderma polysporum. Tetrahedron Lett 37:3039–3042

    CAS  Google Scholar 

  • Nicolaou KC, Simonsen KB, Vassilikogiannakis G, Baran PS, Vidali VP, Pitsinos EN, Couladouros EA (1999) Biomimetic explorations towards the bisorbicillinoids: total synthesis of bisorbicillinol, bisorbibutenolide, and trichodimerol. Angew Chem Int Ed 38:3555–3559

    CAS  Google Scholar 

  • Nicolaou KC, Vassilikogiannakis G, Simonsen K, Baran PS, Zhong YL, Vidali VP, Pitsinos EN, Couladouros EA (2000) Biomimetic total synthesis of bisorbicillinol, bisorbibutenolide, trichodimerol, and designed analogues of the bisorbicillinoids. J Am Chem Soc 122:3071–3079

    CAS  Google Scholar 

  • Nielsen KF, Graefenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53:8190–8196

    PubMed  CAS  Google Scholar 

  • Nobuhara M, Tazima H, Shudo K, Itai A, Okamoto T, Iitaka Y (1976) A fungal metabolite, novel isocyano epoxide. Chem Pharm Bull 24:832–834

    CAS  Google Scholar 

  • Nowak A, Steffan B (1997) Physarorubinic acid, a polyenoyltetramic acid type plasmodial pigment from the slime mold Physarum polycephalum. Liebigs Ann Recl 9:1817–1821

    Google Scholar 

  • Nowak A, Steffan B (1998) Polycephalin B and C: unusual tetramic acids from plasmodia of the slime mold Physarum polycephalum (myxomycetes). Angew Chem Int Ed 37:3139–3141

    CAS  Google Scholar 

  • Nozoe S, Goi M, Morisaki N (1970) Structure of cyclonerodiol. Tetrahedron Lett 15:1293–1296

    PubMed  CAS  Google Scholar 

  • Oh SU, Lee SJ, Kim JH, Yoo ID (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64

    CAS  Google Scholar 

  • Ollis WD, Rey M, Godtfredsen WO, Rasrup-Andersen N, Vangedal S, King TJ (1980) The constitution of the antibiotic trichoviridin. Tetrahedron 36:515–520

    CAS  Google Scholar 

  • Omura S, Tomoda H, Kimura K, Zhen DZ, Kumagai H, Igarashi K, Imamura N, Takahashi Y, Tanaka Y, Iwai Y (1988) Atpenins, new antifungal antibiotics produced by Penicillium sp. Production, isolation, physico-chemical and biological properties. J Antibiot 41:1769–1773

    PubMed  CAS  Google Scholar 

  • Ondeyka JG, Ball RG, Garcia ML, Dombrowski AW, Sabnis G, Kaczorowski GJ, Zink DL, Bills GF, Goetz M, Schmalhofer WA, Singh SB (1995) A carotane sesquiterpene as a potent modulator of the Maxi-K channel from Arthrinium phaeospermum. Bioorg Med Chem Lett 5:733–734

    CAS  Google Scholar 

  • Onishi JC, Milligan JA, Basilio A, Bergstrom J, Curotto J, Huang L, Meinz M, Nallin-Omstead M, Pelaez F, Rew D, Salvatore M, Thompson J, Vicente F, Kurtz MB (1997) Antimicrobial activity of viridiofungins. J Antibiot 50:334–338

    PubMed  CAS  Google Scholar 

  • Ordentlich A, Wiesman Z, Gottlieb HE, Cojocaru M, Chet I (1992) Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum. Phytochemistry 31:485–486

    CAS  Google Scholar 

  • Oshino K, Kumagai H, Tomoda H, Omura S (1990) Mechanism of action of atpenin B on Raji cells. J Antibiot 43:1064–1068

    PubMed  CAS  Google Scholar 

  • Otsuka T, Takase S, Terano H, Okuhara M (1992) New angiogenesis inhibitors, WF-16775 A1 and A2. J Antibiot 45:1970–1973

    PubMed  CAS  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Glioclaudium: biology, ecology and potential for biocontrol. Ann Rev Phytopathol 23:23–54

    Google Scholar 

  • Parker SR, Cutler HG, Schreiner PR (1995a) Koninginin C: a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1126–1127

    Article  CAS  Google Scholar 

  • Parker SR, Cutler HG, Schreiner PR (1995b) Koninginin E: isolation of a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1747–1749

    CAS  Google Scholar 

  • Parker RS, Cutler HG, Jacyno JM, Hill RA (1997) Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776

    CAS  Google Scholar 

  • Pitel DW, Arsenault GP, Vining LC (1971) Cyclonerodiol, a sesquiterpene metabolite of Gibberella fujikuroi. J Antibiot 24:483–484

    PubMed  CAS  Google Scholar 

  • Pohmakotr M, Popuang S (1991) Intramolecular acylation of a-sulfinyl carbanion: a facile synthesis of (±)-pentenomycin I and (±)-epipentenomycin I. Tetrahedron Lett 32:275–278

    CAS  Google Scholar 

  • Poole PR, Ward BG, Whitaker G (1998) The effects of topical treatments with 6-pentyl-2-pyrone and structural analogs on stem end post-harvest rots in kiwi fruit due to Botrytis cinerea. J Agric Food Chem 77:81–86

    CAS  Google Scholar 

  • Pratt BH, Sedgley JH, Heather WA, Sheperd CJ (1972) Oospore production in Phytophtora cinnamomi in the presence of Trichoderma koningii. Aust J Biol Sci 25:861–863

    Google Scholar 

  • Pyke TR, Dietz A (1966) U-21,963, a new antibiotic. I. Discovery and biological activity. Appl Microbiol 14:506–510

    PubMed  CAS  Google Scholar 

  • Qian-Cutrone J, Huang S, Chang LP, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997

    PubMed  CAS  Google Scholar 

  • Rebuffat S, El Hajji M, Hennig P, Davoust D, Bodo B (1989) Isolation, sequence, and conformation of seven trichorzianines B from Trichoderma harzianum. Int J Pept Protein Res 34:200–210

    Article  PubMed  CAS  Google Scholar 

  • Rebuffat S, Prigent Y, Auvin-Guette C, Bodo B (1991) Tricholongins B I and B II, 19-residue peptaibols from Trichoderma longibrachiatum. Solution structure from two-dimensional NMR spectroscopy. Eur J Biochem 201:661–74

    PubMed  CAS  Google Scholar 

  • Rebuffat S, Conraux L, Massias M, Auvin-Guette C, Bodo B (1993) Sequence and solution conformation of the 20-residue peptaibols, saturnisporins SA II and SA IV. Int J Pept Protein Res 41:74–84

    Article  PubMed  CAS  Google Scholar 

  • Rebuffat S, Goulard C, Bodo B (1995) Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J Chem Soc Perkin Trans 1(14):1849–1855

    Google Scholar 

  • Reeves RJ, Jackson RM (1972) Induction of Phytophthora cinnamomi oospores in soil by Trichoderma viride. Trans Br Mycol Soc 59:156–159

    Google Scholar 

  • Reichenbach H, Forche E, Gerth K, Irschik H, Kunze B, Sasse F, Hoefle G, Augustiniak H, Bedorf N (1990) Fungicidal steroids from Trichoderma. Ger. Offen., DE Patent 3823068, 11 Jan 1990

  • Ritieni A, Fogliano V, Nanno D, Randazzo G, Altomare C, Perrone G, Bottalico A, Maddau L, Marras F (1995) Paracelsin E, a new peptaibol from Trichoderma saturnisporum. J Nat Prod 58:1745–1748

    PubMed  CAS  Google Scholar 

  • Rosen T, Taschner MJ, Heathcock CH (1983) Synthetic and biological studies of compactin and related compounds. 2. Synthesis of the lactone moiety of compactin. J Org Chem 49:3994–4003

    Google Scholar 

  • Roush WR, Russo-Rodriguez S (1987) Trichothecene degradation studies. 3. Synthesis of 12,13-deoxy-12,13-methanoanguidine and 12-epianguidine, two optically active analogs of the epoxytrichothecene mycotoxin anguidine. J Org Chem 52:603–606

    CAS  Google Scholar 

  • Saito M, Yamanishi T, Tsuruta O (1979) Studies on the odor substances of fungi. Part I. Identification of the fungal odors produced on the synthetic medium. Shokuhin Sogo Kenkyusho Kenkyu Hokoku 34:67–69

    Google Scholar 

  • Sakai K, Hasumi K, Endo A (1988) Inactivation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by koningic acid. Biochim Biophys Acta 952:297–303

    PubMed  CAS  Google Scholar 

  • Sakuno E, Yabe K, Hamasaki T, Nakajima HA (2000) New inhibitor of 5’-hydroxyaverantin dehydrogenase, an enzyme involved in aflatoxin biosynthesis, from Trichoderma hamatum. J Nat Prod 63:1677–1678

    PubMed  CAS  Google Scholar 

  • Sasaki M, Kaneko Y, Oshita K, Takamatsu H, Asao Y, Yokotsuka T (1970) Compounds produced by molds. VII. Isolation of isocoumarin compounds. Agric Biol Chem 34:1296–1300

    CAS  Google Scholar 

  • Sauviat MP, Laurent D, Koehler F, Pellegrin F (1992) Blockage of the sodium conductance by the mycotoxin cyclonerodiol in voltage-clamped frog skeletal muscle fibers. Recent Adv Toxinol Res 3:266–271

    CAS  Google Scholar 

  • Sawa R, Mori Y, Iinuma H, Naganawa H, Hamada M, Yoshida S, Furutani H, Kajimura Y, Fuwa T, Takeuchi T (1994) Harzianic acid, a new antimicrobial antibiotic from a fungus. J Antibiot 47:731–732

    PubMed  CAS  Google Scholar 

  • Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209

    CAS  Google Scholar 

  • Seepersaud M, Al-Abed Y (2000) The polyhydroxy cyclopentene, a total synthesis of (-)-pentenomycin. Tetrahedron Lett 41:4291–4293

    CAS  Google Scholar 

  • Shiozawa H, Takahashi M, Takatsu T, Kinoshita T, Tanzawa K, Hosoya T, Furuya K, Takahashi S, Furihata K, Seto H (1995) Trachyspic acid, a new metabolite produced by Talaromyces trachyspermus, that inhibits tumor cell heparanase: taxonomy of the producing strain, fermentation, isolation, structural elucidation, and biological activity. J Antibiot 48:357–362

    PubMed  CAS  Google Scholar 

  • Shirota O, Pathak V, Hossain CF, Sekita S, Takatori K, Satake M (1997) Structural elucidation of trichotetronines: polyketides possessing a bicyclo[2.2.2]octane skeleton with a tetronic acid moiety isolated from Trichoderma sp. J Chem Soc Perkin Trans 1(20):2961–2964

    Google Scholar 

  • Shomura T, Yoshida J, Kondo Y, Watanabe H, Omoto S, Inouye S, Niida T (1976) A new antibiotic SF-1768 substance. Meiji Seika Kenkyu Nenpo 16:1–9

    CAS  Google Scholar 

  • Simon A, Dunlop RW, Ghisalberti EL, Sivasithamparam K (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264

    CAS  Google Scholar 

  • Singh SB, Zink DL, Goetz MA, Dombrowski AW, Polishook JD, Hazuda DJ (1998) Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron Lett 39:2243–2246

    CAS  Google Scholar 

  • Singh SB, Zink DL, Doss GA, Polishook JD, Ruby C, Register E, Kelly TM, Bonfiglio C, Williamson JM, Kelly R (2004) Citrafungins A and B, two new fungal metabolite inhibitors of GGTase I with antifungal activity. Org Lett 6:337–340

    PubMed  CAS  Google Scholar 

  • Singh S, Dureja P, Tanwar RS, Singh A (2005) Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17:26–29

    CAS  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Glioclaudium. In: Kubicek CP, Harman GE (eds) Trichoderma and Glioclaudium, vol 1. Taylor & Francis Ltd, London

    Google Scholar 

  • Slater GP, Haskins RH, Hogge LR, Nesbitt LR (1967) Metabolic products from a Trichoderma viride. Can J Chem 45:92–96

    CAS  Google Scholar 

  • Smith AB III, Pilla NN (1980) A stereospecific total synthesis of (±)-epipentenomycin I, (±)-epipentenomycin II, and (±)-epipentenomycin III. Tetrahedron Lett 21:4691–4694

    CAS  Google Scholar 

  • Smith AB III, Branca SJ, Pilla NN, Guaciaro MA (1982) Stereocontrolled total synthesis of (±)-pentenomycins I-III, their epimers, and dehydropentenomycin I. J Org Chem 47:1855–1869

    CAS  Google Scholar 

  • Sono T, Matsumura Y, Yamane S, Suzuki M (1980) First synthesis of an epimer of (±)-pentenomycin I. Chem Lett 12:1619–1620

    Google Scholar 

  • Sparapano L, Evidente A (1995) Studies on structure-activity relationship of seiridins, phytotoxins produced by three species of Seiridium. Nat Toxins 3:166–173

    PubMed  CAS  Google Scholar 

  • Sparapano L, Evidente A, Ballio A, Graniti A, Randazzo G (1986) New phytotoxic butenolides produced by Seiridium cardinale, the pathogen of cypress canker disease. Experientia 42:627–628

    CAS  Google Scholar 

  • Sperry S, Samuels GJ, Crews P (1998) Vertinoid polyketides from the saltwater culture of the fungus Trichoderma longibrachiatum separated from a Haliclona marine sponge. J Org Chem 63:10011–10014

    CAS  Google Scholar 

  • Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330

    PubMed  CAS  Google Scholar 

  • Stokker GE, Hoffman WF, Alberts AW, Cragoe EJ Jr, Deana AA, Gilfillan JL, Huff JW, Novello FC, Prugh JD, Smith RL (1985) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. 1. Structural modification of 5-substituted 3,5-dihydroxypentanoic acids and their lactone derivatives. J Med Chem 28:347–358

    PubMed  CAS  Google Scholar 

  • Strunz GM, Ren WY, Stillwell MA, Valenta Z (1977) Structure and synthesis of a new cyclopentenone derivative from Trichoderma album. Can J Chem 55:2610–2612

    CAS  Google Scholar 

  • Sugahara T, Ogasawara K (1999) Baylis-Hillmann protocol in an enantiocontrolled synthesis of pentenomycin I. Synlett 4:419–420

    Google Scholar 

  • Takahashi N, Suzuki A, Tamura S (1965) Structure of piercidin A. J Am Chem Soc 87:2066–2068

    PubMed  CAS  Google Scholar 

  • Takahashi S, Hashimoto R, Hamano K, Suzuki T, Nakagawa A (1996) Melanoxazal, new melanin biosynthesis inhibitor discovered by using the larval haemolymph of the silkworm, Bombyx mori. Production, isolation, structural elucidation, and biological properties. J Antibiot 49:513–518

    PubMed  CAS  Google Scholar 

  • Takashima J, Wataya Y (1999) Trichothecene derivatives as antimalarial agents. Jpn. Kokai Tokkyo Koho, JP Patent 11228408, 24 Aug 1999

  • Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Shiomi K, Kamei K, Sugoh-Hagino M, Enomoto Y, Fang F, Yamaguchi Y, Masuma R, Zhang CG, Zhang XW, Omura S (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. J Antibiot 51:153–160

    PubMed  CAS  Google Scholar 

  • Tarus PK, Lang’at-Thoruwa CC, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. B Chem Soc Ethiopia 17:185–190

    CAS  Google Scholar 

  • Tezuka Y, Tasaki M, Huang Q, Hatanaka Y, Kikuchi T (1997) Studies on metabolites of mycoparasitic fungi. Part 6. 15-Hydroxyacorenone. New acorane-type sesquiterpene from the culture broth of the mycoparasitic fungus Trichoderma harzianum. Liebigs Ann Recl 12:2579–2580

    Google Scholar 

  • Thines E, Anke H, Sterner O (1998) Trichoflectin, a bioactive azaphilone from the ascomycete Trichopezizella nidulus. J Nat Prod 61:306–308

    PubMed  CAS  Google Scholar 

  • Turner WB, Aldridge DC (eds) (1983) Fungal metabolites II. Academic Press, London

  • Umino K, Furumai T, Matsuzawa N, Awataguchi Y, Ito Y, Okuda T (1973) Pentenomycins. I. Production, isolation, and properties of pentenomycins I and II, new antibiotics from Streptomyces eurythermus MCRI 0738. J Antibiot 26:506–512

    PubMed  CAS  Google Scholar 

  • Umino K, Yamaguchi T, Ito Y (1974) Pentenomycins. IV. Preparation and antimicrobial activities of pentenomycin derivatives. Chem Pharm Bull 22:2113–2117

    PubMed  CAS  Google Scholar 

  • Usami Y, Ikura T, Amagata T, Numata A (2000) First total syntheses and configurational assignments of cytotoxic trichodenones A-C. Tetrahedron: Asymmetry 11:3711–3725

    CAS  Google Scholar 

  • Vicente MF, Cabello A, Platas G, Basilio A, Diez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Pelaez F (2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813

    PubMed  CAS  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol (Available on-line from Blackwell-synergy webpage)

  • Warr GA, Veitch JA, Walsh AW, Hesler GA, Pirnik DM, Leet JE, Lin PF, Medina IA, McBrien KD, Forenza S, Clark JM, Lam KS (1996) BMS-182123, a fungal metabolite that inhibits the production of TNF-alpha by macrophages and monocytes. J Antibiot 49:234–240

    PubMed  CAS  Google Scholar 

  • Watanabe N, Yamagishi M, Mizutani T, Kondoh H, Omura S, Hanada K, Kushida K (1990) CAF-603: a new antifungal carotane sesquiterpene. Isolation and structure elucidation. J Nat Prod 53:1176–1181

    PubMed  CAS  Google Scholar 

  • Watts R, Dahiya J, Chaudhary K, Tauro P (1988) Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil 107:81–84

    CAS  Google Scholar 

  • Westerberg UB, Bolcsfoldi G, Eliasson E (1976) Control of transfer RNA synthesis in the presence of inhibitors of protein synthesis. Biochim Biophys Acta 447:203–213

    PubMed  CAS  Google Scholar 

  • Wheeler MH, Stipanovic RD, Puckhaber LS (1999) Phytotoxicity of equisetin and epi-equisetin isolated from Fusarium equiseti and F. pallidoroseum. Mycol Res 103:967–973

    CAS  Google Scholar 

  • Wicklow DT (1998) In: Pirosynzki KA, Hawksworth D (eds) Coevolution of fungi with plants and animals. Academic Press, New York, p 174

  • Wilson KE, Burk RM, Biftu T, Ball RG, Hoogsteen K (1992) Zaragozic acid A, a potent inhibitor of squalene synthase: initial chemistry and absolute stereochemistry. J Org Chem 57:7151–7158

    CAS  Google Scholar 

  • Wipf P, Halter RJ (2005) Chemistry and biology of wortmannin. Org Biomol Chem 3:2053–2061

    PubMed  CAS  Google Scholar 

  • Wipf P, Kerekes AD (2003) Structure reassignment of the fungal metabolite TAEMC161 as the phytotoxin viridiol. J Nat Prod 66:716–871

    PubMed  CAS  Google Scholar 

  • Worasatit N, Sivasithamparam K, Ghisalberti EL, Rowland C (1994) Variation in pyrone production, pectic enzymes and control of rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii. Mycol Res 98:1357–1363

    Article  CAS  Google Scholar 

  • Wright JM (1954) The production of antibiotics in soil. I. Production of gliotoxin by Trichoderma viride. Ann Appl Biol 41:280–289

    Article  CAS  Google Scholar 

  • Wu YW, Ouyang J, Xiao X, Gao WY, Liu Y (2006) Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin J Chem 24:45–50

    CAS  Google Scholar 

  • Xu XX, Zhu YH (1995) Total synthesis of koninginin A and its diastereoisomer. Tetrahedron Lett 36:9173–9176

    CAS  Google Scholar 

  • Yamano T, Hemmi S, Yamamoto I, Tsubaki K (1970) Trichoviridin, a new antibiotic. Jpn. Tokkyo Koho, JP Patent 45015435, 29 May 1970

  • Yamashita H (2000) Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect. Frag J 28:62–65

    CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    PubMed  CAS  Google Scholar 

  • Zhu J, Germain AR, Porco JA Jr (2004) Synthesis of azaphilones and related molecules by employing cycloisomerization of o-alkynylbenzaldehydes. Angew Chem Int Ed 43:1239–1243

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro G. Collado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reino, J.L., Guerrero, R.F., Hernández-Galán, R. et al. Secondary metabolites from species of the biocontrol agent Trichoderma . Phytochem Rev 7, 89–123 (2008). https://doi.org/10.1007/s11101-006-9032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9032-2

Keywords

Navigation