Effects of the interaction between ozone and carbon dioxide on gas exchange, photosystem II and antioxidants in rice leaves

H. KOBAYAKAWA and K. $IMAI^+$

School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan

Abstract

To understand the interactive effects of O_3 and CO_2 on rice leaves; gas exchange, chlorophyll (Chl) fluorescence, ascorbic acid and glutathione were examined under acute (5 h), combined exposures of O_3 (0, 0.1, or 0.3 cm³ m⁻³, expressed as O^0 , $O^{0.1}$, or $O^{0.3}$, respectively), and CO_2 (400 or 800 cm³ m⁻³, expressed as C^{400} or C^{800} , respectively) in natural-light gas-exposure chambers. The net photosynthetic rate (P_N), maximum (F_v/F_m) and operating (F_q/F_m ') quantum efficiencies of photosystem II (PSII) in young (8^{th}) leaves decreased during O_3 exposure. However, these were ameliorated by C^{800} and fully recovered within 3 d in clean air ($O^0 + C^{400}$) except for the $O^{0.3} + C^{400}$ plants. The maximum PSII efficiency at 1,500 µmol m⁻² s⁻¹ PPFD (F_v'/F_m') for the $O^{0.3} + C^{400}$ plants decreased for all measurement times, likely because leaves with severely inhibited P_N also had a severely damaged PSII. The P_N of the flag (16th) leaves at heading decreased under O_3 exposure, but the decline was smaller and the recovery was faster than that of the 8^{th} leaves. The F_q'/F_m' of the flag leaves in the $O^{0.3} + C^{400}$ and $O^{0.3} + C^{800}$ plants decreased just after gas exposure, but the F_v/F_m was not affected. These effects indicate that elevated CO_2 interactively ameliorated the inhibition of photosynthesis induced by O_3 exposure. However, changes in antioxidant levels did not explain the above interaction.

Additional key words: ascorbic acid; chlorophyll fluorescence; elevated CO₂; glutathione; net photosynthesis; *Oryza sativa*; ozone; quantum efficiency; respiration; stomatal conductance.

Introduction

Photochemical oxidants are generated as a result of complex photochemical reactions involving ultraviolet rays and the nitrogen oxides and hydrocarbons emitted from cars and factories during warm, sunny and windless weather. Up to 90% of photochemical oxidants are the secondary pollutant ozone (O₃) (Cabrera *et al.* 1988). The Japanese environmental quality standard for photochemical oxidants is set at < 0.06 cm³ m⁻³, and when it exceeds 0.12 and 0.24 cm³ m⁻³, local public bodies must, under the regulations, dispatch an oxidant warning and an alarm, respectively (Nakanishi *et al.* 2009). In the Kanto region of Japan, where rice is cultivated as a staple summer crop, 10–20 warnings are received every growing season, and hourly peak values are sometimes

close to 0.2 cm³ m⁻³ (Environ. Improve. Div. Tokyo Metro. Bureau Environ. 2005). Kobayashi (1999) estimated that O_3 decreased rice production by up to 10% in the Kanto region of Japan in 1981–1985. Thus, we need to understand the effects of acute (single or repeated) O_3 exposure on rice plant physiology, as a basis for reductions in dry-matter production and yield formation of this crop in the field where acute photochemical oxidants appear, along with chronic exposure.

Ozone is known to induce visible injury (Ishioh *et al.* 2005, Imai and Kobori 2008), destroy cellular ultrastructure (Toyama *et al.* 1989), inhibit net photosynthesis (P_N ; Imai and Kobori 2008, Yamaguchi *et al.* 2008),

Received 16 July 2010, accepted 23 March 2011.

⁺Corresponding author; fax: +81-44-934-7807; e-mail: imai@isc.meiji.ac.jp

Abbreviations: AA – ascorbic acid; C_i – intercellular CO₂ concentration; Chl – chlorophyll; DHA – dehydroascorbic acid; g_s – stomatal conductance; F' – steady fluorescence; F₀ – minimum fluorescence of dark-adapted state; F₀' – minimum fluorescence in the steady state; F_m – maximum fluorescence of dark-adapted state; F_m' – maximum fluorescence in the steady state; F_q' – difference between F_m' and F'; F_v – variable fluorescence; F_v' – variable fluorescence in the steady state; GSH – glutathione; GSSG – oxidized glutathione; P_N – net photosynthetic rate; PPFD – photosynthetic photon flux density; PSII – photosystem II; q_N – nonphotochemical quenching coefficient; q_P – photochemical quenching coefficient; R_D – respiration rate; RDS – redox state; ROS – reactive oxygen species.

Acknowledgment: This work was supported in part by a grant for the Private University Strategic Infrastructure Formation Support Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. S0901028). The authors are grateful to editors and anonymous reviewers for their valuable suggestions.

decrease the activity and content of ribulose-1,5bisphosphate carboxylase/oxygenase (Rubisco) (Ishioh and Imai 2005), and decrease the contents of Chl and carotenoids (Inada et al. 2008, Rai and Agrawal 2008) in leaves. It also changes photosynthate partitioning (Nouchi et al. 1995), and, ultimately, decreases the yield (Reid and Fiscus 2008, Yamaguchi et al. 2008, Rai et al. 2010) of rice. To maintain rice yield, we need to understand the role of O3 in both carbon fixation and photochemical reactions. Fortunately, the use of Chl fluorescence measurements has become an established practice to diagnose changes in photosystem II (PSII) due to environmental stresses such as excessive light and water stress, and a number of studies on the effects of environmental stress on PSII have been conducted (Papageorgiou and Govindjee 2004). So far, however, there are few studies on the effect of O_3 on photochemical reactions in rice leaves, i.e., PSII was adversely affected by chronic exposure (Rai and Agrawal 2008, Pang et al. 2009).

Concurrent with O_3 air pollution, the global atmospheric CO_2 concentration has increased from the preindustrial value of about 280 cm³ m⁻³ to 385.2 cm³ m⁻³ in 2008, and this trend will continue as long as current trends in human activities persist (WMO WDCGG 2010). Because elevated CO_2 concentrations decrease stomatal

Materials and methods

Plant materials and gas exposure: Japonica rice (Oryza sativa L. cv. Koshihikari) seeds were sown in plastic pots (diameter \times height = 0.16 m \times 0.19 m) containing 2.5 kg of dry soil and 12.5 g of chemical fertilizer (N, P₂O₅ K₂O = 8, 8, 8, %) and cultivated in a natural-light glasshouse with ventilation from early May to late August when the gas exposures began. Therefore, all plants received the same environmental conditions. Gas exposures were conducted at two growth stages with different set of plants. Just after the full expansion of the 7th leaf (Haun index = 7.0, Haun 1973) or the 16^{th} leaf (flag leaf, Haun index = 16.0), the plants were transferred into 4 naturallight gas-exposure chambers (width \times depth \times height = $2 \text{ m} \times 2 \text{ m} \times 1.9 \text{ m}$: S-2003A, Koito Industries, Yokohama, Japan) and kept at 28/23°C (12-h day/12-h night), 60% RH and 400 cm³ m⁻³ CO₂ ($O^0 + C^{400}$). Just after the full expansion of the 8th leaf or at heading, 5-h gas exposure treatments (8:00-13:00; local time) were applied under several combinations of O_3 and CO_2 : $O^0 +$ C^{400} (control = clean air), $O^0 + C^{800}$, $O^{0.1}$ or $O^{0.3} + C^{400}$, and $O^{0.1}$ or $O^{0.3} + C^{800}$. O₃ was supplied by a high-voltage ozone generator using dry air (MO-5A, Ozone System, Tokyo, Japan), and CO₂ was supplied from cylinders containing liquid CO₂. These gases were injected into air that had been charcoal filtered. The concentrations of O_3 and CO₂ were measured and computer-controlled by an ultraviolet absorption-type O₃ analyzer (EG-2001F, Ebara Jitsugyo, Tokyo, Japan) and an infrared CO₂ suppressing O₃ intake through the stomata (Booker and Fiscus 2005). Donnelly et al. (2000) showed that chronic O_3 (ambient plus 50 cm³ m⁻³)-induced adverse effects on the photosynthetic activity and Chl content were ameliorated by elevated CO_2 (680 or 510 cm³ m⁻³) in a spring wheat. By exposing rice leaves to combinations of O₃ and CO₂, Ishioh and Imai (2005) found that elevated CO_2 ameliorated the decline in P_N , Rubisco and Chl caused by O₃, and Imai and Kobori (2008) further examined the $P_{\rm N}$, $g_{\rm s}$, and $P_{\rm N}/C_{\rm i}$ -curve and concluded that the amelioration of the O_3 -induced decline in P_N was largely due to the decreased g_s under elevated CO₂. However, this was not the sole reason, as other components of photosynthetic process, such as the photosystem, were affected by O₃. Therefore, to determine interactive effects between O_3

conductance (g_s) , they ameliorate O₃-induced injury by

Therefore, to determine interactive effects between O_3 and CO_2 on key photosynthetic parameters, we examined the effects of O_3 and CO_2 on the P_N , g_s and PSII at the vegetative and reproductive stages of rice development. Furthermore, because there are reports for rice (Nouchi 1993) and *Arabidopsis thaliana* (Overmyer *et al.* 2000, Sasaki-Sekimoto *et al.* 2005) that antioxidants scavenge oxidative stressors, including O_3 , we measured the contents of ascorbic acid and glutathione as major antioxidants in rice.

analyzer (*ZRH, Fuji Electric Systems*, Tokyo, Japan), respectively. After the 5-h gas exposure, all the plants were kept in the same chamber for 3 d under $28/23^{\circ}$ C 60% RH and 400 cm³ m⁻³ CO₂ (O⁰ + C⁴⁰⁰).

Gas-exchange measurements: To compare the responses of leaves at different growth stages, in situ gasexchange measurements were made on the 8th leaves (vegetative state of plant development) or the 16th leaves (heading) on the main stem. Measurements were made just before gas exposure (BE: 1-0 h before), during gas exposure (DE: 4-5 h from the start of gas exposure), just after gas exposure (AE-0: 0.1-1.1 h after) and 1 and 3 d after gas exposures (AE-1, AE-3). Two portable photosynthesis systems (LI-6400XT, LI-COR, Lincoln, NE, USA) were used, with 5 replicate plants in each chamber. Environmental conditions within the LI-COR cuvette during measurements were set at 28°C leaf temperature, 1.5 kPa VPD and 1,500 µmol m⁻² s⁻¹ PPFD (mixed light from red and blue LEDs). Gas-exchange measurements of the 8th leaves also were conducted at 23°C leaf temperature and 1.5 kPa VPD in darkness (1-2 h after the beginning of dark period) to obtain respiration rate $(R_{\rm D})$.

Chl fluorescence measurements were conducted immediately after the gas-exchange measurements using a fluorometer (*LI-6400-40*, *LI-COR*, Lincoln, NE, USA) attached to *LI-6400* system, with the same replicate plants

that were used for photosynthesis. Chl fluorescence measurements were made by applying 0.1, 7,000 and 1,500 μ mol m⁻² s⁻¹ of measuring light, saturating pulse (flash) and actinic light, respectively. Before the fluorescence measurements, the leaves were kept in the dark for 10 min (to avoid the recovery from O₃ injury, Sonoike 2009) and then the minimum (F_0) and maximum (F_m) fluorescence were determined by irradiating the measuring light and saturating pulses. Thereafter, the steady fluorescence (F'), minimum fluorescence (F_0') and maximum fluorescence (Fm') in the steady state were determined under actinic light irradiation. The minimum fluorescence in the steady state (F_0) was determined during a brief interruption of actinic light irradiation in the presence of far-red light. The maximum quantum efficiency (F_v/F_m) , operating efficiency (F_q'/F_m') , maximum efficiency at the given PPFD (Fv'/Fm') and the photochemical (q_p) and nonphotochemical (q_N) quenching coefficients of PSII were obtained using the following equations (Baker 2008, Sonoike 2009):

$$\begin{split} F_v/F_m &= (F_m - F_0)/F_m \\ F_q'/F_m' &= (F_m' - F')/F_m' \\ F_v'/F_m' &= (F_m' - F_0')/F_m' \\ q_p &= (F_m' - F')/(F_m' - F_0') \\ q_N &= 1 - (F_m' - F_0')/(F_m - F_0) \end{split}$$

Antioxidant measurements: Separate sets of plants were exposed to combined O_3 and CO_2 and used for measurement of antioxidant concentrations. The 7th and 8th leaves at vegetative stage or the 15th and 16th (flag) leaves at heading were collected 0, 1, and 3 d after gas

Results

Effects of O₃ and CO₂ on photosynthesis in the 8th leaves: The results for gas exchange and PSII are shown in Fig. 1. During gas exposure (DE), the $P_{\rm N}$ of the O^{0.1} + C⁴⁰⁰, O^{0.3} + C⁴⁰⁰ and O^{0.3} + C⁸⁰⁰ plants decreased to 72, 45, and 91%, respectively, of the respective initial values. Just after gas exposure (AE-0), these further decreased to 49, 38, and 46%, respectively, of the initial values. However, in clean air $(O^0 + C^{400})$, the plants began to recover from O₃-induced decline, and 1 d after gas exposure (AE-1), the $P_{\rm N}$ values were 78, 60, and 83%, respectively, of the initial values. The $P_{\rm N}$ recovered further by 3 d after gas exposure (AE-3), when there was no significant difference between the $O^{0.1} + C^{400}$ and $O^0 +$ C^{400} plants. However, the inhibition of the P_N in the $O^{0.3} + C^{400}$ plants remained low from AE-1 to AE-3, and the P_N of the $O^{0.3} + C^{400}$ plants was 60% of the initial value at AE-3 (Fig. 14). In the $O^0 + C^{800}$, $O^{0.1} + C^{400}$, $O^{0.1} + C^{800}$, $O^{0.3} + C^{400}$ and $O^{0.3} + C^{800}$ plants, the stomatal conductance (g_s) substantially decreased compared to that of the $O^0 + C^{400}$ plants. With the same O_3 concentration, the g_s of the C^{400} and C^{800} plants were similar at DE. At AE-0, the g_s stayed at the same level as those at DE, except that of the $O^{0.1} + C^{400}$ plants, which decreased

exposures with 4 replicate plants in each chamber. Immediately after the measurements of fresh mass (FM), leaves were frozen in liquid N₂ and ground with a pestle and mortar by adding metaphosphoric acid to obtain leaf extracts. Because of the limited numbers of replicate plants, the amount of ascorbic acid (reduced form: AA; oxidized form: DHA) for the 7th- or 15th-leaf extract was determined by the hydrazine method (Roe et al. 1944) on a spectrophotometer (Ubest-30, JASCO Co., Tokyo, Japan), and the amount of glutathione (reduced form: GSH; oxidized form: GSSG) for the 8th- or 16th-leaf extract by the enzymatic recycling method (Mano et al. 2009) on a microplate reader (MTP-450 (Lab), Corona Electric Co., Ibaraki, Japan). The standard reagents used were L(+)-ascorbic acid (Kanto Chemical Co., Inc., Japan), glutathione (oxidized form, Wako Pure Chemical Ind., Ltd., Japan), and an enzyme kit consists of glutathione reductase, 5-5'-dithiobis(2-nitrobenzoic acid) and NADPH (NWLSSTM Glutathione Assay, Northwest Life Science Specialities, LLC, USA). The redox states (RDS) of ascorbic acid and glutathione were calculated as follows: AA/(AA + DHA) and GSH/(GSH + GSSG), respectively.

Statistical analysis: All data were subjected to a twoway analysis of variance (*ANOVA*) with a software package (*Excel Statistics 2004 for Windows, Social Survey Research Information Co.*, Tokyo, Japan). Appropriate standard errors of the means (SE) were calculated for presentation with line diagram. The significance of the treatment effect was determined by *F*-test.

further. The g_s recovered almost completely between AE-1 and AE-3, when there was no significant difference between any of the treatments, except the $O^{0.3} + C^{400}$ plants (Fig. 1*B*). As shown in Table 1, there were significant, direct effects of O_3 and CO_2 and also, interaction between these two factors on the P_N and g_s of the 8th leaves at DE. At AE-0, the effect of CO₂ was diminished because plants were kept in an air of C⁴⁰⁰. However, a significant effect remained for CO₂ on the P_N and g_s remained at AE-1 and AE-3 because the leaves received $O^{0.1}$ treatment recovered well while those received $O^{0.3}$ treatment were severely damaged.

The photosystem II (PSII) measurements revealed responses similar to the $P_{\rm N}$ responses (Fig. 1*C*–*G*). The maximum quantum efficiency ($F_{\rm v}/F_{\rm m}$) of the O^{0.1} + C⁴⁰⁰, O^{0.3} + C⁴⁰⁰ and O^{0.3} + C⁸⁰⁰ plants decreased to 92, 86, and 95%, respectively, of the respective initial values at DE. At AE-0, they decreased further to 91, 81, and 89%, respectively, of the initial values. In the O^{0.1} + C⁴⁰⁰ and O^{0.3} + C⁸⁰⁰ plants, the $F_{\rm v}/F_{\rm m}$ recovered at AE-1, but that of the O^{0.3} + C⁴⁰⁰ plants was 92 and 93% of the initial value on AE-1 and AE-3, respectively (Fig. 1*C*). The operating quantum efficiency ($F_{\rm q}'/F_{\rm m}$ ') decreased at DE and AE-0,

Fig. 1. Effects of O₃ and CO₂ on the net photosynthetic rate (P_N), stomatal conductance (g_s), and the maximum quantum efficiency (F_v/F_m), operating efficiency (F_q'/F_m'), maximum efficiency at 1,500 µmol m⁻² s⁻¹ PPFD (F_v'/F_m'), photochemical (q_p) and nonphotochemical (q_N) quenching coefficients of PSII, and the respiration rate (R_D) and g_s in darkness in the 8th leaves. *Vertical bars* indicate standard errors of the means (n = 5). BE, DE, AE-0, AE-1 and AE-3 indicate before, during, just after, and 1 d and 3 d after gas exposure, respectively. \bullet , $O^0 + C^{400}$; \circ , $O^0 + C^{800}$; \blacktriangle , $O^{0.1} + C^{400}$; \triangle , $O^{0.1} + C^{800}$.

Table 1. Statistical analyses of the effects of O₃ and/or CO₂ on the gas exchange and chlorophyll fluorescence parameters of rice leaves shown in Fig. 1 and 2. DE, AE-0, AE-1 and AE-3 indicate during, just after, 1 d, and 3 d after the gas exposure, resp. *p<0.05, **p<0.01, ***p<0.001, n.s. – not significant by two-way *ANOVA*. F_q'/F_m' – operating quantum efficiency of PSII; F_v/F_m – maximum quantum efficiency of PSII; F_v'/F_m' – maximum efficiency at 1,500 µmol m⁻² s⁻¹ PPFD; g_s – stomatal conductance; P_N – net photosynthetic rate; q_N – nonphotochemical quenching coefficient; q_P – photochemical quenching coefficient; R_D – respiration rate.

Leaf position	Time	Factor	$P_{\rm N}$	$g_{ m s}$	F_v/F_m	F_q'/F_m'	F_v'/F_m'	q _p	q_N	$R_{\rm D}$	$g_{\rm s}$ in darkness
8 th	DE	O ₃	***	***	***	***	***	*	*	-	-
		CO_2	***	*	***	*	*	n.s.	n.s.		
		$O_3 \times CO_2$	***	**	***	*	n.s.	*	n.s.		
	AE-0	O_3	***	***	***	***	**	n.s.	n.s.	***	**
		CO_2	n.s.	n.s.	*	n.s.	n.s.	n.s.	n.s.	**	**
		$O_3 \times CO_2$	***	**	n.s.	**	n.s.	*	n.s.	***	**
	AE-1	O3	***	***	**	***	n.s.	**	n.s.	*	**
		CO_2	**	n.s.	**	n.s.	*	n.s.	n.s.	n.s.	**
		$O_3 \times CO_2$	***	**	n.s.	**	n.s.	n.s.	*	*	**
	AE-3	O3	***	**	**	n.s.	*	n.s.	n.s.	n.s.	*
		CO_2	***	**	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
		$O_3 \times CO_2$	***	n.s.	*	***	**	n.s.	n.s.	n.s.	*
16 th	DE	O_2	***	***	ns	*	*	ns	**		
10	22	CO2	***	***	n.s.	*	**	*	*		
		$O_3 \times CO_2$	n.s.	n.s.	n.s.	n.s.	n.s.	**	n.s.		
	AE-0	O3	***	***	n.s.	*	*	n.s.	n.s.		
		CO ₂	***	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		
		$O_3 \times CO_2$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		
	AE-1	O3	***	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		
		CO_2	***	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		
		$O_3 \times CO_2$	**	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		
	AE-3	O_3	*	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		
		CO_2	n.s.	n.s.	*	n.s.	n.s.	n.s.	n.s.		
		$O_3 \times CO_2$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		

as did F_v/F_m . This damage was slightly reversed on AE-1, but the values for the $O^{0.1} + C^{400}$, $O^{0.3} + C^{400}$ and $O^{0.3} + C^{800}$ plants were still decreased to 70, 62, and 81%, of the respective initial values. On AE-3, the inhibition disappeared completely in the $O^{0.1} + C^{400}$ and $O^{0.3} + C^{800}$ plants, but the activity of the $O^{0.3} + C^{400}$ plants was still 28% lower than that of the control plants ($O^0 + C^{400}$) (Fig. 1*D*). The F_v '/ F_m ' of the $O^{0.1} + C^{400}$, $O^{0.3} + C^{400}$ and $O^{0.3} + C^{800}$ plants at DE decreased to 81, 65, and 80%, respectively, of the respective initial values at DE, but there was no significant difference between any of the treatments, except for the $O^{0.3} + C^{400}$ plants, from AE-0 to AE-3. On the other hand, the maximum quantum efficiency at 1,500 µmol m⁻² s⁻¹ (F_v '/ F_m ') of the $O^{0.3} +$ C^{400} plants was 73, 80 and 80% of the initial values at AE-0, AE-1 and AE-3, respectively (Fig. 1*E*). The photochemical quenching coefficient (q_p) decreased in the $O^{0.3} + C^{400}$ plants at DE and in the $O^{0.3} + C^{400}$ and $O^{0.1} + C^{400}$ plants at AE-0. The q_p of the $O^{0.1} + C^{400}$, $O^{0.1} + C^{800}$, $O^{0.3} + C^{400}$ and $O^{0.3} + C^{800}$ plants decreased to 77, 88, 77, and 83%, respectively, of the respective initial values at AE-1, but there was no significant difference between any of the treatments on AE-3 (Fig. 1*F*). The nonphotochemical quenching coefficient (q_N) of the $O^{0.3} + C^{400}$ plants was slightly high compared to that of the control at AE-3 (Fig. 1*G*). As a whole, the effects of O_3 and CO_2 on parameters of PSII were similar to the trends observed for P_N and g_s , but O_3 and CO_2 had less effect on q_p and q_N (Table 1).

The respiration rate (R_D) of the O^{0.1} + C⁴⁰⁰ and O^{0.3} + C⁴⁰⁰ plants at AE-0 increased to 147 and 234%, respectively, of the respective initial values (Fig. 1*H*). The g_s in darkness of the O^{0.3} + C⁴⁰⁰ plants at AE-0 increased tenfold compared to that of the control

Fig. 2. Effects of O₃ and CO₂ on the net photosynthetic rate (P_N), stomatal conductance (g_s), and maximum quantum efficiency (F_v/F_m), operating efficiency (F_q'/F_m'), maximum efficiency at 1,500 µmol m⁻² s⁻¹ PPFD (F_v'/F_m'), and photochemical (q_p) and nonphotochemical (q_N) quenching coefficients of PSII in the flag leaves. V*ertical bars* indicate standard errors of the means (n = 5). BE, DE, AE-0, AE-1 and AE-3 indicate before, during, just after, and 1 d and 3 d after gas exposure, respectively. •, O⁰ + C⁴⁰⁰; \circ , O⁰ + C⁴⁰⁰; \blacktriangle , O^{0.1} + C⁴⁰⁰; \blacksquare , O^{0.1} + C⁴⁰⁰; \blacksquare , O^{0.3} + C⁴⁰⁰.

232

 $(O^0 + C^{400})$, and this tendency was maintained until AE-3 (Fig. 1*I*). Statistical analyses indicated that the effects of O₃ and CO₂ on R_D and g_s in darkness at AE-0 and AE-1 were similar to those of P_N and g_s in light but the R_D recovered almost completely at AE-3 (Table 1).

Effects of O₃ and CO₂ on photosynthesis in the 16th (flag) leaves: As shown in Fig. 2, the $P_{\rm N}$ of the $O^{0.1} + C^{400}$, $O^{0.3} + C^{400}$ and $O^{0.3} + C^{800}$ plants decreased at DE and AE-0, and recovered at AE-1 and AE-3. However, the $P_{\rm N}$ of the O^{0.3} + C⁴⁰⁰ plants at AE-3 decreased to only 91% of the initial value (Fig. 2A). The g_s of all treatments decreased at DE, but this decrease was completely reversed at AE-1 (Fig. 2B). The F_v/F_m did not differ significantly among treatments at any measurement time (Fig. 2*C*). The F_q'/F_m' of the $O^{0.3} + C^{400}$ and $O^{0.3} + C^{800}$ plants decreased at AE-0, but there was no significant difference between the other treatments (Fig. 2D). The F_v '/ F_m ' of the O^{0.3} + C⁴⁰⁰ plants decreased to 86% of the initial value, and this occurred in the $O^{0.3} + C^{800}$ plants at AE-0 as well. However, there was no significant difference between any of the plots from AE-1 to AE-3 (Fig. 2*E*). The q_p in the $O^{0.3} + C^{400}$ plants decreased to 84 and 88% of the initial value at DE and AE-0, respectively. However, no significant difference was observed between the control and the $O^{0.3} + C^{400}$ plants at AE-1 (Fig. 2F). Table 1 showed that the 16th leaves had similar trend with the 8th leaves in the $P_{\rm N}$ but the $g_{\rm s}$ was less affected and the PSII was almost unaffected by O_3 and CO_2 as seen in Fig. 2.

Effects of O₃ and CO₂ on the antioxidants: Just before the gas exposures, the total ascorbic acid (Total), reduced ascorbic acid (AA) and dehydroascorbic acid (DHA) contents [mmol kg⁻¹(FM)] and the redox state (RDS) of ascorbic acid (RDS = AA/Total) in the 7th leaves were

Discussion

Consistent with previous observations in rice leaves (Imai and Kobori 2008), $P_{\rm N}$ was inhibited by $O^{0.1}$ and $O^{0.3}$ but ameliorated by C^{800} in the 8th leaves (Fig. 1*A*), and one of the causal factors was stomatal closure due to elevated CO_2 , which limited the O_3 intake (McKee *et al.* 1997, Mullholand et al. 1997, Booker and Fiscus 2005). At the same O₃ concentration, g_s was similar irrespective of CO₂ concentration. However, at the same CO₂ concentration, g_s was lower at higher O₃ concentration (Fig. 1*B*). Therefore, the limitation of O_3 uptake through the stomata cannot fully explain the O_3 -induced decrease in P_N and its amelioration by elevated CO₂, as shown by the larger decline of $P_{\rm N}$ under $O^{0.3}$ than under $O^{0.1}$ at the same $C_{\rm i}$ (Imai and Kobori 2008). Mesophyll dysfunction, including the inactivation of Rubisco (Ishioh and Imai 2005) and/or the photosystem (Rai and Agrawal 2008), could be other reasons. The O_3 -induced decrease in P_N started to attenuate at AE-1, and almost disappeared 5.73, 2.90, 2.83 and 0.50, respectively, and those in the 15th leaves were 8.46, 0.78, 7.68, and 0.10, respectively. Table 2 shows that the total ascorbic acid content in the 7th leaves was not affected at AE-0, but the contents of the $O^{0.1} + C^{400}$, $O^{0.3} + C^{400}$, and $O^{0.3} + C^{800}$ plants decreased significantly at AE-1 compared to those before gas exposures (BE). The RDS of ascorbic acid in the $O^{0.1} + C^{400}$, $O^{0.3} + C^{400}$, and $O^{0.3} + C^{800}$ plants at AE-1 decreased to 55, 51, and 55%, respectively, of the BE. The $O^{0.1} + C^{400}$ and $O^{0.3} + C^{800}$ plants recovered from this decrease by AE-3, but the $O^{0.3} + C^{400}$ plants did not. The total ascorbic acid content in the 15th leaves was not affected by gas exposures. The RDS of ascorbic acid in the $O^{0.3} + C^{400}$ plants decreased at AE-1, but recovered at AE-3. There was no interactive effect between O₃ and CO₂ in both 7th and 15th leaves for any parameter, except RDS of the 7th leaves at AE-3.

The total glutathione (Total), reduced glutathione (GSH) and oxidized glutathione (GSSG) contents $[\mu mol kg^{-1}(FM)]$ and the RDS of glutathione (RDS = GSH/Total) in the 8th leaves just before the gas exposures were 66.0, 48.5, 17.5, and 0.72, respectively, and those in the 16th (flag) leaves were 139.1, 117.3, 21.8, and 0.84, respectively. Table 3 shows that the total glutathione content in the 8^{th} leaves in the $O^{0.3}$ + C^{400} at AE-3 increased to 165% of BE. The decrease in RDS and concomitant increase in GSSG occurred with O_3 exposures in the $O^{0.1}+C^{400}$ and $O^{0.3}+C^{400}$ plants at AE-0 and AE-1. However, these were recovered by AE-3. The total glutathione content in the 16^{th} leaves of the $O^{0.3}$ + C⁴⁰⁰ plants at AE-1 increased to 144% of the BE, and that of the $O^{0.3} + C^{800}$ plants at AE-3 was also higher than the BE. As seen in ascorbic acid, there was no interactive effect between O₃ and CO₂ in both 8th and 16th leaves, except total glutathione and GSH of the 16th leaves at AE-1 (Table 3).

at AE-3, except in the $O^{0.3} + C^{400}$ plants (Fig. 1*A*). A similar situation was found in the case of g_{s} , and, therefore, we assumed that one reason why P_N did not recover for a long time after gas exposure, as in the $O^{0.3} + C^{400}$ plants, was stomatal dysfunction (Fig. 1*B*), in which O₃ adversely affects the osmotic adjustment of the guard cells toward the inhibition of the K⁺ channel (Torsethaugen *et al.* 1999). In accordance with the observation by Imai and Kobori (2008), the abnormally high g_s in the $O^{0.3} + C^{400}$ plants in darkness (Fig. 1*H*), which was equivalent to that under illumination (Fig. 1*B*) supports the above-mentioned assumption.

Though the effects of O_3 on parameters of PSII were not as large compared to those of gas exchange, the F_q'/F_m' in the 8th leaves of the $O^{0.1} + C^{400}$ and $O^{0.3} + C^{800}$ plants decreased from DE to AE-1, but that of the $O^{0.3} + C^{400}$ plants decreased until AE-3 (Fig. 1*D*). Similarly, the F_v'/F_m' in the $O^{0.1} + C^{400}$ and $O^{0.3} + C^{800}$ plants decreased Table 2. Effects of O_3 and CO_2 on the ascorbic acid content [mmol kg⁻¹(FM)] and its redox state (RDS) in the 7th and 15th leaves, n = 4. *p<0.05, **p<0.01, ***p<0.001, n.s. – not significant, by two-way *ANOVA*. AA – ascorbic acid; DHA – dehydroascorbic acid; Total = AA + DHA.

Leaf position	O ₃ [cm ³ n	CO ₂	Just afte Total	r gas expos AA	sure (AE-0) DHA	RDS	1 d after Total	gas exposi AA	ure (AE-1) DHA	RDS	3 d after Total	gas exposı AA	ıre (AE-3) DHA	RDS
γ^{th}	00	C ⁴⁰⁰	5.20	2.86	2.34	0.57	6.69	3.36	3.33	0.50	5.58	3.13	2.44	0.56
		C^{800}	6.71	3.60	3.11	0.54	6.48	3.22	3.25	0.49	7.26	4.06	3.20	0.56
	0 ^{0.1}	C^{400}	5.28	2.96	2.32	0.60	4.08	1.17	2.91	0.28	2.60	1.45	1.14	0.56
		C^{800}	5.86	3.14	2.72	0.54	5.69	2.67	3.02	0.50	5.54	2.77	2.77	0.50
	$0^{0.3}$	C^{400}	4.25	2.26	1.98	0.56	2.98	0.75	2.09	0.26	2.81	0.73	2.08	0.25
		C^{800}	6.03	3.26	2.77	0.58	2.87	06.0	1.97	0.28	2.72	1.22	1.50	0.44
15 th	00	C^{400}	8.40	0.79	7.61	0.11	7.23	0.95	6.27	0.13	5.67	0.74	4.93	0.12
		C^{800}	7.21	0.80	6.41	0.11	6.64	0.90	5.74	0.13	5.80	0.50	5.30	0.11
	0 ^{0.1}	C^{400}	7.72	0.69	7.03	0.09	6.68	0.40	6.28	0.06	6.49	0.72	5.77	0.11
		C^{800}	7.19	0.86	7.04	0.11	6.50	0.52	5.98	0.10	6.47	0.81	5.66	0.13
	$0^{0.3}$	C^{400}	6.40	0.72	5.69	0.13	8.70	0.43	8.27	0.05	5.09	1.39	3.71	0.27
		C^{800}	6.86	0.68	6.17	0.10	5.96	0.57	5.40	0.09	6.30	0.58	5.72	0.11
ANOVA		Factor												
	${\cal T}^{ m th}$	03	n.s.	n.s.	n.s.	n.s.	* *	* *	*	*	* *	* * *	n.s.	* * *
		CO_2	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	*	*	n.s.	n.s.
		$O_3 \times CO_2$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	* *
	15^{th}	03	n.s.	n.s.	n.s.	n.s.	n.s.	*	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
		CO_2	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
		$O_3 \times CO_2$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.

Table 3. Effects of O₃ and CO₂ on the glutathione content [µmol kg⁻¹(FM)] and its redox state (RDS) in the 8th and flag (16th) leaves, n = 4. *p<0.05, **p<0.01, ***p<0.001, n.s. – not significant, by two-way *ANOVA*. GSH – glutathione; GSSG – oxidized glutathione; Total = GSH + GSSG.

Leaf position	O ₃ cm ³ m	⁻³ CO ₂	Just afte Total	r gas expos GSH	ure (AE-0) GSSG	RDS	1 d after Total	gas exposi GSH	ure (AE-1) GSSG	RDS	3 d after Total	gas exposure GSH	e (AE-3) GSSG	RDS
8 th	00	C ⁴⁰⁰	69.4	51.7	17.7	0.75	65.6	49.8	15.7	0.71	58.7	39.7	19.0	0.62
		C^{800}	65.4	46.3	19.2	0.71	68.4	48.7	19.6	0.67	67.3	40.6	26.7	0.60
	$0^{0.1}$	C^{400}	68.2	29.1	39.1	0.39	62.9	28.1	34.8	0.40	66.4	40.9	25.5	0.56
		C^{800}	54.2	27.4	26.8	0.48	59.1	36.8	22.3	0.61	66.5	46.3	20.2	0.68
	$0^{0.3}$	C^{400}	71.6	30.8	40.8	0.40	57.6	24.6	33.0	0.42	109.1	78.2	31.0	0.73
		C^{800}	69.8	31.2	38.6	0.45	63.9	34.6	29.3	0.50	62.4	43.0	19.4	0.60
16 th	00	C^{400}	137.4	116.3	21.1	0.85	133.3	114.2	19.1	0.86	136.2	112.1	24.1	0.82
		C^{800}	135.2	115.2	20.0	0.85	134.0	113.5	20.5	0.84	134.3	113.6	20.7	0.84
	0 ^{0.1}	C^{400}	128.8	96.1	32.7	0.75	124.9	91.4	33.5	0.73	155.3	128.4	26.8	0.82
		C^{800}	132.6	115.8	16.8	0.87	147.2	124.4	22.8	0.83	139.0	113.4	25.5	0.82
	$0^{0.3}$	C^{400}	133.4	92.1	41.3	0.68	199.9	152.6	47.3	0.76	189.6	149.2	40.4	0.78
		C^{800}	138.7	100.2	38.4	0.71	140.9	93.3	47.7	0.66	175.8	131.0	44.8	0.75
ANOVA		Factor												
	8 th	O_3	n.s.	n.s.	*	*	n.s.	n.s.	*	n.s.	n.s.	n.s.	n.s.	n.s.
		CO_2	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
		$O_3 \times CO_2$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
	16^{th}	O_3	n.s.	n.s.	*	*	*	n.s.	*	*	* *	*	*	n.s.
		CO_2	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
		$O_3 \times CO_2$	n.s.	n.s.	n.s.	n.s.	*	*	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.

from DE to AE-0, but that of the $O^{0.3} + C^{400}$ plants decreased until AE-3 (Fig. 1*E*). On the other hand, the q_p of the $O^{0.1} + C^{400}$ and $O^{0.3} + C^{400}$ plants decreased compared to that of the control $(O^0 + C^{400})$ at AE-0, and the q_p of the $O^{0.1} + C^{400}$, $O^{0.3} + C^{400}$ and $O^{0.3} + C^{800}$ plants decreased at AE-1 (Fig. 1*F*). Therefore, the initial factor of the decrease in F_q'/F_m' in the $O^{0.1} + C^{400}$ and $O^{0.3} + C^{800}$ plants at DE and AE-0 was ascribed mainly to the $F_{\rm v}\ensuremath{^\prime}\xspace F_{\rm m}\ensuremath{^\prime}\xspace F_{\rm m}\xspace$, and the second factor continued to AE-1 was the q_p : O₃ first disrupted the PSII, and then adversely affected the downstream of plastoquinone A (Q_A) in photosynthetic electron transport. The decrease in F_v '/ F_m ' from DE to AE-3 by the O^{0.3} + C⁴⁰⁰ plants indicated severe disruption of PSII by O₃. The P_N of the O^{0.3} + C⁴⁰⁰ plants did not recover for a long time due to the damage sustained by PSII. Consequently, as the PSII is one of the most vulnerable parts to O_3 exposure, the recovery of PSII from the O₃-induced damage also indicates the recovery in other parameters of photosynthesis.

In the 16^{th} leaves, P_{N} decreased as a result of O_3 exposure, and the reduction due to O3 was ameliorated by C^{800} (Fig. 2A), as also observed in the 8th leaves (Fig. 1A). However, the damage sustained by the 16^{th} leaves was less, and they recovered faster than the 8th leaves: the decreased $P_{\rm N}$ in the O^{0.3} + C⁴⁰⁰ plants recovered almost completely at AE-3. Also, the disruption of the PSII in the $O^{0.3} + C^{400}$ plants was less and the 16th leaves (Fig. 2*C*–*F*) recovered faster than in the 8th leaves (Fig. 1*C*–*F*). Since the F_q'/F_m' in the $O^{0.3} + C^{800}$ plants decreased at AE-0 and that of the $O^{0.3} + C^{400}$ plants decreased at DE, the decrease in the former treatment was ascribed to the decrease in Fv'/Fm', and the decrease in the latter treatment to decreases in both the F_v'/F_m 'and the q_p . Only the PSII was suppressed in the $O^{0.3} + C^{800}$ plants, whereas both the PSII and the downstream reactions of Q_A were suppressed in the $O^{0.3} + C^{400}$ plants. However, as the F_v/F_m values were not significantly different between the control and O^{0.3} plants, the damage of the PSII in the 16th leaves was recovered faster than that in the 8^{th} leaves. Also, the q_N of the $O^{0.3}$ plants increased more than in the control at AE-3 both in the 8th and 16th leaves, indicating the treatments with more damage and late recovery consumed an excessive energy. This manifested as heat dissipation derived from the decreased energy consumption for the carbon fixation reaction.

Rao *et al.* (1995) reported that in wheat the activation of the ascorbate-glutathione cycle is induced by O_3 exposure, based on increases in DHA and GSSG. However, McKee *et al.* (1997) found no increase in ascorbic acid or glutathione content caused by elevated CO_2 during fumigation of wheat with air containing moderately elevated O_3 . In our study, the RDS of ascorbic acid and glutathione decreased as a result of O_3 exposure where photosynthesis was severely impeded, but these changes occurred at different times, because the recovery of AA

was slower than that of GSH (Tables 2, 3). We considered that, (1) ascorbic acid and glutathione might detoxify the ROS in different way(s) besides the ascorbate-glutathione cycle, and/or (2) changes in RDS did not seem to harmonize irrespective of active ascorbate-glutathione cycle operation, since each one molecule of DHA and GSH react but their amounts are very different in the rice leaves. Indeed, the amount of ascorbic acid in rice leaves was far greater than that of glutathione (Inada et al. 2008). Furthermore, the elevated CO₂ did not compensate for the decline of these antioxidant levels (Table 2, 3). Therefore, changes in antioxidant levels in our experiment did not explain the amelioration of photosynthesis by elevated CO₂ to O₃ exposure. In the rice plant, Ishioh et al. (2005) observed that at

the reproductive stage, the detrimental effects of O₃fumigation on the $P_{\rm N}$ and dry mass were less than those at the vegetative stage. In the current experiment, the responses of the $P_{\rm N}$ in the 8th and the 16th (flag) leaves to O₃ and CO₂ were substantially different (Fig. 1, Table 1), probably due to differences in leaf thickness and inclination angle. The leaves become thicker with increasing height of the leaf position (Hoshikawa 1989), *i.e.* the 16th leaves are thicker than the 8th ones. Because the concentration of antioxidants per FM is higher in the 16th leaves (Tables 2, 3), it is easy to anticipate that the inhibition of the $P_{\rm N}$ and related processes in those leaves is less than in the 8th leaves due to higher contents of antioxidants per unit leaf area in the 16th leaves. On the other hand, the inclination angle of rice leaves becomes steeper at later growth stages (Ito et al. 1973). Because the inclination angle of the 16th leaves is steeper than that of the 8th leaves, the amount of incident light on the 16th leaves is smaller than on the 8th ones. Consequently, the probability of photoinhibition in the older (16th) leaves would be smaller than in the younger (8th) leaves, as reported by Heath (1994) in Phaseolus vulgaris. In wheat, Mulholland et al. (1997) observed that the O_3 -induced inhibition of the P_N was less pronounced in the 8^{th} (flag) leaves than in the 5^{th} to 7^{th} leaves, and they ascribed this to the greater content of active Rubisco and the absence of shade-acclimation of the flag leaves.

In summary, the photosynthesis mechanism and related processes in rice plants growing near urban areas occasionally sustain damage due to acute exposure to photochemical oxidants (especially O_3), leading to a decrease in the potential yield. However, since O_3 -induced injury is ameliorated by elevated CO_2 , the injury may be reduced in the future provided that the background O_3 level does not rise significantly. Therefore, it is important to ascertain whether or not such responses actually occur during the lifecycle of the rice plants with elevated CO_2 (Olszyk and Wise 1997), and to analyze the plant hormones which mediate oxidative signal transduction (Morita *et al.* 2002, Baier *et al.* 2005).

References

- Baier, M., Kandlbinder, A., Golldack, D., Dietz, K.-J.: Oxidative stress and ozone: perception, signaling and response. – Plant Cell Environ. 28: 1012-1020, 2005.
- Baker, N.R.: Chlorophyll fluorescence : A probe of photosynthesis *in vivo*. – Annu. Rev. Plant Biol. **59**: 89-113, 2008.
- Booker, F.L., Fiscus, E.L.: The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO₂ in soybean. J. Exp. Bot. **56**: 2139-2151, 2005.
- Cabrera, H., Dawson, S.V., Stromberg, C.: A California air standard to protect vegetation from ozone. – Environ. Pollut. 53: 397-408, 1988.
- Donnelly, A., Jones, M.B., Burke, J.I., Schnieders, B.: Elevated CO₂ provides protection from O₃ induced photosynthetic damage and chlorophyll loss in flag leaves of spring wheat (*Triticum aestivum* L., cv. 'Minaret'). – Agric. Ecosyst. Environ. **80**: 159-168, 2000.
- Environ. Improve. Div., Tokyo Metropolitan Government Bureau Environ.: [Review report on the photochemical oxidant measures.] – J. Jap. Soc. Atmos. Environ. 40: A65-A77, 2005. [In Jap.]
- Haun, J.R.: Visual quantification of wheat development. Agron. J. **65**: 116-119, 1973.
- Heath, R.L.: Possible mechanisms for the inhibition of photosynthesis by ozone. Photosynth. Res. **39**: 439-451, 1994.
- Hoshikawa: The Growing Rice Plant. –Nobunkyo, Tokyo 1989. [In Jap.]
- Imai, K., Kobori, K.: Effects of the interaction between ozone and carbon dioxide on gas exchange, ascorbic acid content, and visible leaf symptoms in rice leaves. – Photosynthetica 46: 387-394, 2008.
- Inada, H., Yamaguchi, M., Satoh, R., Hoshino, D., Nagasawa, A., Negishi, Y., Nouchi, I., Kobayashi, K., Izuta, T.: Effects of ozone on photosynthetic components and radical scavenging system in leaves of rice (*Oryza sativa* L.). J. Agric. Meteorol. **64**: 243-255, 2008.
- Ishioh, T., Imai, K.: [Effects of atmospheric ozone and carbon dioxide concentrations on gas exchanges, contents of Rubisco and chlorophyll in leaves of lowland rice.] – Proc. Kanto Branch,Crop Sci. Soc. Jap. 20: 54-55, 2005. [In Jap.]
- Ishioh, T., Kobori, K., Imai, K.: The detrimental effect of tropospheric O₃ on lowland rice is meliorated by elevated CO₂. – In: Toriyama, K., Heong, K. L., Hardy, B.,(ed.): Rice is Life: Scientific Perspectives for the 21st Century. Pp 557-560. IRRI, Los Baños 2005.
- Ito, A., Udagawa, T., Uchijima, Z.: [Phytometrical studies of crop canopies. II. Canopy structure of rice crops in relation to varieties and growing stage.] – Jap. J. Crop. Sci. 42: 334-342, 1973. [In Jap.]
- Kobayashi, K.: [Assessing the impacts of tropospheric ozone on agricultural production.] J. Jap. Soc. Atmos. Environ. 34: 162-175, 1999. [In Jap.]
- Mano, J., Khorobrykh, S., Amako, K.: [Reactive oxygen species and antioxidants associated with photosynthesis.] – Low Temp. Sci. **67**: 179-195, 2009. [In Jap.]
- McKee, I.F., Eiblmeier, M., Polle, A.: Enhanced ozonetolerance in wheat grown at an elevated CO₂ concentration: ozone exclusion and detoxification. – New Phytol. **137**: 275-284, 1997.
- Morita, S., Tanaka, K.: Detoxification of active oxygen species and tolerance in plants exposed to air pollutants and CO₂. –

In: Omasa, K., Saji, H., Youssefian, S., Kondo, N. (ed.): Air Pollution and Plant Biotechnology. Prospects for Phytomonitoring and Phytoremediation. Pp. 253-267. Springer-Verlag, Tokyo 2002.

- Mulholland, B.J., Craigon, J., Black, C.R., Colls, J.J., Atherton, J., Landon, G.: Impact of elevated atmospheric CO₂ and O₃ on gas exchange and chlorophyll content in spring wheat (*Triticum aestivum* L). J. Exp. Bot. **48**: 1853-1863, 1997.
- Nakanishi, J., Shinozaki, H., Inoue, K.: [Ozone Photochemical Oxidant.] – Maruzen Co., Tokyo 2009. [In Jap.]
- Nouchi, I.: Changes in antioxidant levels and activities of related enzymes in rice leaves exposed to ozone. Soil. Sci. Plant Nutr. **39**: 309-320, 1993.
- Nouchi, I., Ito, O., Harazono, Y., Kouchi, H.: Acceleration of ¹³C-labelled photosynthate partitioning from leaves to panicles in rice plants exposed to chronic ozone at the reproductive stage. Environ. Pollut. **88**: 253-260, 1995.
- Olszyk, D.M., Wise, C.: Interactive effects of elevated CO₂ and O₃ on rice and *flacca* tomato. Agr. Ecosyst. Environ. **66**: 1-10, 1997.
- Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels, C., Sandermann, H., Jr, Kangasjärvi, J.: Ozonesensitive Arabidopsis *rcd1* mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. – Plant Cell **12**: 1849-1862, 2000.
- Pang, J., Kobayashi, K., Zhu, J.G.: Yield and photosynthetic characteristics of flag leaves in Chinese rice (*Oryza sativa* L.) varieties subjected to free-air release of ozone. – Agr. Ecosyst. Environ. **132**: 203-211, 2009.
- Papageorgiou, G.C., Govindjee. (ed.): Chlorophyll *a* Fluorescence. A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. – Springer, Dordrecht 2004.
- Rai, R., Agrawal, M.: Evaluation of physiological and biochemical responses of two rice (*Oryza sativa* L.) cultivars to ambient air pollution using open top chambers at a rural site in India. – Sci. Total Environ. **407**: 679-691, 2008.
- Rai, R., Agrawal, M., Agrawal, S.B.: Threat to food security under current levels of ground level ozone: A case study for Indian cultivars of rice. – Atmos. Environ. 44: 4272-4282, 2010.
- Rao, M.V., Hale, B.A., Ormrod, D.P.: Amelioration of ozoneinduced oxidative damage in wheat plants grown under high carbon dioxide (Role of antioxidant enzymes). – Plant Physiol. 109: 421-432, 1995.
- Reid, C.D., Fiscus, E.L.: Ozone and density affect the response of biomass and seed yield to elevated CO_2 in rice. Global Change Biol. **14**: 60-76, 2008.
- Roe, J.H., Oesterling, M.J.: The determination of dehydroascorbic acid and ascorbic acid in plant tissues by the 2,4– dinitrophenylhydrazine method. – J. Biol. Chem. 152: 511-517, 1944.
- Sasaki-Sekimoto, Y., Taki, N., Obayashi, T., Aono, M., Matsumoto, F., Sakurai, N., Suzuki, H., Hirai, M. Y., Noji, M., Saito, K., Masuda, T., Takamiya, K.-I., Shibata, D., Ohta, H.: Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. – Plant J. 44: 653-668, 2005.
- Sonoike, K.: [Basics of the measurements of photosynthesis by pulse amplitude modulation.] – Low Temp. Sci. 67: 507-524,

H. KOBAYAKAWA, K. IMAI

2009. [In Jap.]

- Torsethaugen, G., Pell, E.J., Assman, S.M.: Ozone inhibits guard cell K⁺ channels implicated in stomatal opening. Proc. nat. Acad. Sci. USA **96**: 13577-13582, 1999.
- Toyama, S., Yoshida, M., Niki, T., Ohashi, T., Koyama, I.: Studies on ultrastructure and function of photosynthetic apparatus in rice cells. IV. Effects of low dose and intermittent fumigation of ozone on the ultrastructure of chloroplasts in

rice leaf cells. - Jap. J. Crop Sci. 58: 664-672, 1989.

- WMO WDCGG: Data Summary No. 34. Pp. 1-13. JMA (Japan), Tokyo 2010.
- Yamaguchi, M., Inada, H., Satoh, R., Hoshino, D., Nagasawa, A., Negishi, Y., Sasaki, H., Nouchi, I., Kobayashi, K., Izuta, T.: Effects of ozone on the growth, yield and leaf gas exchange rates of two Japanese cultivars of rice (*Oryza sativa* L.) J. Agr. Meteorol. 64: 131-141, 2008.