Skip to main content

Advertisement

Log in

Emerging Technologies to Target Drug Delivery to the Skin – the Role of Crystals and Carrier-Based Systems in the Case Study of Dapsone

  • EXPERT REVIEW
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Dapsone (DAP) is a long-established molecule that remains a promising therapeutic agent for various diseases mainly because it combines antimicrobial and anti-inflammatory activities. Its oral application, however, is limited by the dose-dependent hematological side effects that may rise from systemic exposure. As an alternative to overcome this limitation, the administration of DAP to the skin has witnessed prominent interest in the past 20 years, particularly when applied to the treatment of dermatological disorders. In this review, all technological strategies proposed to the topical delivery of DAP are presented. Most of the reported studies have been devoted to the clinical use and safety of a gel formulation containing both solubilized and microcrystalline drug, however, the technological characteristics of such preparation are still missing. In parallel, the incorporation of DAP into vesicular and particulate carriers (e.g. nano- and microemulsions, niosomes, invasomes, bilosomes, cubosomes, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanocapsules and polymer-lipid-polymer hybrid nanoparticles) appears to be an alternative to provide greater drug release control, enhanced drug solubilization and follicular targeting. Indeed, the main application of DAP topical formulations reported in the literature was the treatment of acne vulgaris, a disease located in the hair follicle. Other diseases affecting different regions of the skin (e.g. cutaneous lupus erythematosus and cutaneous leishmaniasis), however, may also benefit from a topical therapeutic regimen containing DAP. Therefore, the investigation of appendageal route in comparison to passive transmembrane diffusion as a function of targeted disease, as well as pharmacokinetic studies, are perspectives highlighted herein. Such studies may drive future efforts towards the rational development of safe and effective technologies to deliver DAP to the skin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

BCS:

Biopharmaceutical classification system

CLE:

Cutaneous lupus erythematosus

DAC/NRF:

The German Drug Codex/New German Formulary

DAP:

Dapsone

EE:

Encapsulation efficiency

FDA:

U.S. Food and Drug Administration

HET-CAM:

Hen’s Egg Test – Chorioallantoic Membrane

ME:

Microemulsion

NE:

Nanoemulsion

NLC:

Nanostructured lipid carriers

SLN:

Solid lipid nanoparticles

References

  1. Rang HP, Dale MM, Ritter JM, Flower RJ. Rang & Dale’s pharmacology. 7th ed. London: Churchill Livingstone; 2011. 792 p.

    Google Scholar 

  2. Brunton L, Chabner B, Knollman B. Goodman and Gilman’s the pharmacological basis of therapeutics, twelfth edition. 12th ed. McGraw-Hill Education: New York City; 2011. 1808 p.

    Google Scholar 

  3. Remington JP. In: Allen LV, Adejare A, Desselle S, Felton L, Moffat A, editors. Remington - the science and practice of pharmacy. 22nd ed. London: Pharmaceutical Press; 2012. 3024 p.

    Google Scholar 

  4. Wozel G, Blasum C. Dapsone in dermatology and beyond. Arch Dermatol Res. 2014;306(2):103–24.

    CAS  PubMed  Google Scholar 

  5. Gillis TP. Mycobacterium leprae. In: Tang Y-W, Sussman M, Liu D, Poxton I, Shwartzman J, editors. Molecular medical microbiology. 2nd ed. Boston: Academic Press; 2015. p. 1655–68.

    Google Scholar 

  6. Wozel VEG. Innovative use of dapsone. Dermatol Clin. 2010;28(3):599–610.

    CAS  PubMed  Google Scholar 

  7. Wolf R, Orni-Wasserlauf R. A century of the synthesis of dapsone: its anti-infective capacity now and then. Int J Dermatol. 2000;39(10):779–83.

    CAS  PubMed  Google Scholar 

  8. Farrah G, Tan E. The use of oral antibiotics in treating acne vulgaris: a new approach. Dermatol Ther. 2016;29(5):377–84.

    PubMed  Google Scholar 

  9. Ghaoui N, Hanna E, Abbas O, Kibbi AG, Kurban M. Update on the use of dapsone in dermatology. Int J Dermatol. 2020:1–9.

  10. Yost JM, Christopher S, Hale, Meehan SA, BN ML. Dermatitis herpetiformis. Dermatol Online J. 2015;20(12).

  11. Lockwood D, Mariowe S, Leprosy LS. In: Finch R, Greenwood D, Whitley R, Norrby SR, editors. Antibiotic and chemotherapy. 9th ed. London: Saunders Elsevier; 2010. p. 916.

    Google Scholar 

  12. Williams DL, Spring L, Harris E, Roche P, Gillis TP. Dihydropteroate synthase of Mycobacterium leprae and dapsone resistance. Antimicrob Agents Chemother. 2000;44(6):1530–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. WHO. Leprosy elimination [Internet]. Leprosy. 2020. Available from: http://www.who.int/lep/mdt/en/

  14. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78.

    PubMed  Google Scholar 

  15. Monteiro LM, Lione VF, do Carmo FA, do Amaral LH, da Silva JH, Nasciutti LE, et al. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies. Int J Nanomedicine. 2012;7:5175–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ahmad R, Rogers H. Pharmacokinetics and protein binding interactions of dapsone and pyrimethamine. Br J Clin Pharmacol. 1980;10(5):519–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zuidema J, Hilbers-Modderman ESM, Merkus FWHM. Clinical pharmacokinetics of Dapsone. Clin Pharm. 1986;11:299–315.

    CAS  Google Scholar 

  18. Molinelli E, Paolinelli M, Campanati A, Brisigotti V, Offidani A. Metabolic, pharmacokinetic, and toxicological issues surrounding dapsone. Expert Opin Drug Metab Toxicol. 2019;15(5):367–79.

    CAS  PubMed  Google Scholar 

  19. Chong BF, Werth VP. Management of cutaneous lupus erythematosus. In: Wallace D, Hahn B, editors. Dubois’ Lupus erythematosus and related syndromes. 9th ed. London: Elsevier; 2018. p. 816.

    Google Scholar 

  20. Pickert A, Raimer S. An evaluation of dapsone gel 5% in the treatment of acne vulgaris. Expert Opinon Pharmacother. 2009;10(9):1515–21.

    CAS  Google Scholar 

  21. Al-Salama ZT, Deeks ED. Dapsone 7.5% gel: a review in acnes vulgaris. Am J Clin Dermatol. 2017;18(1):139–45.

    PubMed  Google Scholar 

  22. Scheinfeld N. Aczone, a topical gel formulation of the antibacterial, anti-inflammatory Dapsone for the treatment of acne. Curr Opin Investig Drugs. 2009;10(5):474–81.

    CAS  PubMed  Google Scholar 

  23. Stotland M, Shalita AR, Kissling RF. Dapsone 5% Gel. Am J Clin Dermatol. 2009;10:221–7.

    PubMed  Google Scholar 

  24. Thiboutot DM, Kircik L, McMichael A, Cook-Bolden FE, Tyring SK, Berk DR, et al. Efficacy, safety, and dermal tolerability of Dapsone gel, 7.5% in patients with moderate acne vulgaris: a pooled analysis of two phase 3 trials. J Clin Aesthet Dermatol. 2016;9(10):18–27.

    PubMed  PubMed Central  Google Scholar 

  25. Tanghetti EA, Dhawan S, Green L, Ling M, Downie J, Germain MA, et al. Clinical evidence for the role of a topical anti-inflammatory agent in Comedonal acne: findings from a randomized study of Dapsone gel 5% in combination with Tazarotene cream 0.1% in patients with acne vulgaris. J Drugs Dermatol. 2011;10(7):783–92.

    CAS  PubMed  Google Scholar 

  26. FDA. The Orange Book: Approved Drug Products with Therapeutic Equivalence evaluations [Internet]. U.S. Food & Drug Administration. 2020. Available from: https://www.accessdata.fda.gov/scripts/cder/ob/

  27. Belum VR, Marchetti MA, Dusza SW, Cercek A, Kemeny NE, Lacouture ME. A prospective, randomized, double-blinded, split-face/chest study of prophylactic topical dapsone 5% gel vs. moisturizer for the prevention of cetuximab-induced acneiform rash. J Am Acad Dermatol. 2017;77(3):577–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferguson L, Fearfield L. Topical dapsone gel is a new treatment option for acne agminata. Clin Exp Dermatol. 2019;44(4):453–5.

    CAS  PubMed  Google Scholar 

  29. Frieling GW, Williams NL, Lim SJM, Rosenthal SI. Novel use of topical Dapsone 5% gel for erythema Elevatum Diutinum: safer and effective. J Drugs Dermatol. 2013;12(4):481–4.

    PubMed  Google Scholar 

  30. Burbidge T, Haber RM. Topical Dapsone 5% gel as an effective therapy in dermatitis Herpetiformis. J Cutan Med Surg. 2016;20(6):600–1.

    PubMed  Google Scholar 

  31. Babalola O, Zhang J, Kristjansson A, Whitaker-Worth D, McCusker M. Granuloma faciale treated with topical dapsone: a case report. Dermatol Online J. 2014;20(8).

  32. Faghihi G, Khosravani P, Nilforoushzadeh MA, Hosseini SM, Assaf F, Zeinali N, et al. Dapsone gel in the treatment of papulopustular rosacea: a double-blind randomized clinical trial. J Drugs Dermatol. 2015;14(6):602–6.

    CAS  PubMed  Google Scholar 

  33. Broussard KC, Berger TG, Rosenblum M, Murase JE. Erosive pustular dermatosis of the scalp: a review with a focus on dapsone therapy. J Am Acad Dermatol. 2012;66(4):680–6.

    PubMed  Google Scholar 

  34. Doolan BJ, Cranwell WC, Nicolopoulos J, Dolianitis C. Topical dapsone gel for treatment of axillary subcorneal pustular dermatosis. J Dermatol. 2019;46(11):e437–8.

    PubMed  Google Scholar 

  35. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–14.

    CAS  PubMed  Google Scholar 

  36. Alexander A, Dwivedi S, Ajazuddin, Giri TK, Saraf S, Saraf S, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164(1):26–40.

    CAS  PubMed  Google Scholar 

  37. Mak WC, Patzelt A, Richter H, Renneberg R, Lai KK, Rühl E, et al. Triggering of drug release of particles in hair follicles. J Control Release. 2012;160(3):509–14.

    CAS  PubMed  Google Scholar 

  38. Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21.

    CAS  PubMed  Google Scholar 

  39. Bouwstra JA, Honeywell-Nguyen PL. Skin structure and mode of action of vesicles. Adv Drug Deliv Rev. 2002;54(1):S41–55.

    CAS  PubMed  Google Scholar 

  40. Bouwstra JA, Honeywell-nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res. 2003;42:1–36.

    CAS  PubMed  Google Scholar 

  41. Vyas A, Sonker AK, Gidwani B. Carrier-based drug delivery system for treatment of acne. Sci World J 2014;2014(276260):1–14.

  42. Menon GK. New insights into skin structure: scratching the surface. Adv Drug Deliv Rev. 2002;54(SUPPL):S3.

    CAS  Google Scholar 

  43. Venuganti VV, Sahdev P, Hildreth M, Guan X, Perumal O. Structure-skin permeability relationship of dendrimers. Pharm Res. 2011;28(9):2246–60.

    CAS  PubMed  Google Scholar 

  44. Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3).

  45. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2009;26(11):1261–8.

    Google Scholar 

  46. Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4):390–9.

    PubMed  Google Scholar 

  47. Menon GK, Cleary GW, Lane ME. The structure and function of the stratum corneum. Int J Pharm. 2012;435(1):3–9.

    CAS  PubMed  Google Scholar 

  48. van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta Mol Cell Biol Lipids. 2014;1841(3):295–313.

    Google Scholar 

  49. Moreno E, Calvo A, Schwartz J, Navarro-Blasco I, González-Peñas E, Sanmartín C, et al. Evaluation of skin permeation and retention of topical dapsone in murine cutaneous leishmaniasis lesions. Pharmaceutics. 2019;11(607):1–19.

    Google Scholar 

  50. Hedaya MA. Basic pharmacokinetics. Boca Raton: CRC Press; 2012. 595 p.

    Google Scholar 

  51. Mlosek RK, Malinowska S, Sikora M, Debowska R, Stepień A, Czekaj K, et al. The use of high frequency ultrasound imaging in skin moisturization measurement. Skin Res Technol. 2013;19(2):169–75.

    PubMed  Google Scholar 

  52. Hoenig LJ. Molecular mechanisms of skin aging and age-related diseases. Skinmed. 2017;15(3):240.

    PubMed  Google Scholar 

  53. Elbe-Bürger A. Skin architecture and function. In: Kamolz LP, Jeschke MG, Horch RE, Küntscher M, Brychta P, editors. Handbook of burns. Wien: Springer; 2012. p. 29–46.

    Google Scholar 

  54. Neupane R, Boddu SHS, Renukuntla J, Babu RJ, Tiwari AK. Alternatives to biological skin in permeation studies: current trends and possibilities. Pharmaceutics. 2020;12(2).

  55. Wong TW. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J Control Release. 2014;193:257–69.

    CAS  PubMed  Google Scholar 

  56. Benson H. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv. 2005;2(1):23–33.

    CAS  PubMed  Google Scholar 

  57. Barry BW. Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev. 2002;54(SUPPL):31–40.

    Google Scholar 

  58. Fang C-L, Aljuffali IA, Li Y-C, Fang J-Y. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv. 2014;5(9):991–1006.

    CAS  PubMed  Google Scholar 

  59. Cordain L, Lindeberg S, Hurtado M, Hill K, Eaton B, Brand-Miller J. Acne vulgaris: a disease of western civilization. Arch Dermatol. 2002;138(12):1584–90.

    PubMed  Google Scholar 

  60. Suh DH, Kwon HH. What’s new in the physiopathology of acne? Br J Dermatol. 2015;172(S1):13–9.

    CAS  PubMed  Google Scholar 

  61. Knor T. The pathogenesis of acne. Acta Dermatovenerologica Croat. 2005;13(1):44–9.

    Google Scholar 

  62. Degitz K, Placzek M, Borelli C, Plewig G. Pathophysiology of acne. JDDG - J Ger Soc Dermatol. 2007;5(4):316–23.

    Google Scholar 

  63. Dawson AL, Dellavalle RP. Acne vulgaris. BMJ. 2013;346(7907):1–7.

    Google Scholar 

  64. Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379(9813):361–72.

    PubMed  Google Scholar 

  65. Sardana K, Gupta T, Garg VK, Ghunawat S. Antibiotic resistance to Propionobacterium acnes: worldwide scenario, diagnosis and management. Expert Rev Anti-Infect Ther. 2015;13(7):883–96.

    CAS  PubMed  Google Scholar 

  66. Zaenglein AL. Acne vulgaris. N Engl J Med. 2018;379(14):1343–52.

    PubMed  Google Scholar 

  67. Kuhn A, Sticherling M, Bonsmann G. Klinische manifestationen des kutanen lupus erythematodes. JDDG - J Ger Soc Dermatol. 2007;5(12):1124–37.

    Google Scholar 

  68. Wenzel J. Cutaneous lupus erythematosus: new insights into pathogenesis and therapeutic strategies. Nat Rev Rheumatol. 2019;15(9):519–32.

    PubMed  Google Scholar 

  69. Kuhn A, Rondinone R, Doria A, Shoenfeld Y. 1st international conference on cutaneous lupus Erythematosus Düsseldorf, Germany, September 1-5, 2004. Autoimmun Rev. 2005;4(1):66–78.

    PubMed  Google Scholar 

  70. Blake SC, Daniel BS. Cutaneous lupus erythematosus: a review of the literature. Int J Women’s Dermatol. 2019;5(5):320–9.

    Google Scholar 

  71. Kuhn A, Landmann A, Wenzel J. Advances in the treatment of cutaneous lupus erythematosus. Lupus. 2016;25(8):830–7.

    CAS  PubMed  Google Scholar 

  72. Chasset F, Francès C. Current concepts and future approaches in the treatment of cutaneous lupus Erythematosus: a comprehensive review. Drugs. 2019;79:1199–215.

    PubMed  Google Scholar 

  73. Kuhn A, Aberer E, Bata-Csörgő Z, Caproni M, Dreher A, Frances C, et al. S2k guideline for treatment of cutaneous lupus erythematosus – guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol. 2017;31(3):389–404.

    CAS  PubMed  Google Scholar 

  74. Klebes M, Wutte N, Aberer E. Dapsone as second-line treatment for cutaneous lupus Erythematosus? A retrospective analysis of 34 patients and a review of the literature. Dermatology. 2016;232(1):91–6.

    CAS  PubMed  Google Scholar 

  75. Helton DR, Osborne DW, Pierson SK, Buonarati MH, Bethem RA. Pharmacokinetic profiles in rats after intravenous, oral, or dermal administration of dapsone. Drug Metab Dispos. 2000;28(8):925–9.

    CAS  PubMed  Google Scholar 

  76. Osborne DW. Diethylene glycol monoethyl ether: an emerging solvent in topical dermatology products. J Cosmet Dermatol. 2011;10(4):324–9.

    PubMed  Google Scholar 

  77. Thiboutot DM, Willmer J, Sharata H, Halder R, Garret S. Pharmacokinetics of Dapsone gel, 5% for the treatment of acne vulgaris. Clin Pharmacokinet. 2012;46(8):697–712.

    Google Scholar 

  78. Jarrat MT, Jones TM, Chang-Lin J-E, Tong W, Berk DR, Lin V, et al. Safety and pharmacokinetics of once-daily Dapsone gel, 7.5% in patients with moderate acne vulgaris patients with moderate acne vulgaris. J Drugs Dermatol. 2016;15(10):1250–9.

    Google Scholar 

  79. Del Rosso JQ, Kircik L, Gallagher CJ. Comparative efficacy and tolerability of dapsone 5% gel in adult versus adolescent females with acne vulgaris. J Clin Aesthet Dermatol. 2015;8(1):31–7.

    PubMed  PubMed Central  Google Scholar 

  80. Eichenfield LF, Lain T, Frankel EH, Jones TM, Chang-Lin J-E, Berk DR, et al. Efficacy and safety of once-daily Dapsone gel, 7.5% for the treatment of adolescents and adults with acne vulgaris: second of two identically designed, large, multicenter, randomized, vehicle-controlled trials. J Drugs Dermatol. 2016;15(8):962–9.

    CAS  PubMed  Google Scholar 

  81. Alexis AF, Burgess C, Callender VD, Herzog JL, Roberts WE, Schweiger ES, et al. The efficacy and safety of topical Dapsone gel, 5% for the treatment of acne vulgaris in adult females with skin of color. J Drugs Dermatol. 2016;15(2):197–204.

    CAS  PubMed  Google Scholar 

  82. Lucky AW, Maloney JM, Roberts J, Taylor S, Jones T, Ling M, et al. Dapsone gel 5% for the treatment of acne vulgaris: safety and efficacy of long-term (1 year) treatment. J Drugs Dermatol. 2007;6(10):981–7.

    PubMed  Google Scholar 

  83. Lynde CW, Andriessen A. Cohort study on the treatment with Dapsone 5% gel of mild to moderate inflammatory acne of the face in women. Skinmed. 2014;12(1):15–21.

    PubMed  Google Scholar 

  84. Stockton TC, Tanghetti EA, Lain E, Zeichner JA, Alvandi N. Clinical experience with once-daily Dapsone gel, 7.5% monotherapy in patients with acne vulgaris. J Drugs Dermatol. 2018;17(6):602–8.

    PubMed  Google Scholar 

  85. Taylor SC, Cook-Bolden FE, McMichael A, Downie JB, Rodriguez DA, Alexis AF, et al. Efficacy and safety of topical Dapsone gel 7.5% for treatment of acne vulgaris by Fitzpatrick skin type. J Drugs Dermatol. 2018;17(2):160–7.

    PubMed  Google Scholar 

  86. Draelos ZD, Rodriguez DA, Kempers SE, Bruce S, Peredo MI, Downie J, et al. Treatment response with once-daily topical Dapsone gel, 7.5% for acne vulgaris: subgroup analysis of pooled data from two randomized, double-blind study. J Drugs Dermatol. 2017;16(6):591–8.

    CAS  PubMed  Google Scholar 

  87. Del RJQ, Kircik L, Tanghetti E. Management of truncal acne vulgaris with topical Dapsone 7.5% gel. J Clin Aesthet Dermatol. 2018;11(8):45–50.

    Google Scholar 

  88. Piette WW, Taylor S, Pariser D, Jarratt M, Sheth P, Wilson D. Hematologic safety of dapsone gel, 5%, for topical treatment of acne vulgaris. Arch Dermatol. 2008;144(12):1564–70.

    CAS  PubMed  Google Scholar 

  89. Webster GF. Is topical Dapsone safe in glucose-6-phosphate dehydrogenase-deficient and sulfonamide-allergic patients? J Drugs Dermatol. 2010;9(5):532–6.

    PubMed  Google Scholar 

  90. Tanghetti EA, Harper J, Baldwin HE, Kircik LH, Bai Z, Alvandi N. Once-daily topical Dapsone gel, 7.5%:effective for acne vulgaris regardless of baseline lesion count, with superior efficacy in females. J Drugs Dermatol. 2018;17(11):1192–8.

    PubMed  Google Scholar 

  91. Warner KS, Parashar AP, Swaminathan V, Bhatt V. Topical dapsone and dapsone/adapalene compositions and methods for use thereof. United States: United States Patent Office; US 2014/0142184 A1, 2014. p. 12.

  92. Kircik LH. Use of Dapsone 5% gel as maintenance treatment of acne vulgaris following completion of oral doxycycline and Dapsone 5% gel combination treatment. J Drugs Dermatol. 2016;15(2):191–5.

    CAS  PubMed  Google Scholar 

  93. Swartzentruber GS, Yanta JH, Pizon AF. Methemoglobinemia as a complication of topical Dapsone. N Engl J Med. 2015;372:491–2.

    CAS  PubMed  Google Scholar 

  94. Graff DM, Bosse GM, Sullivan J. Case report of methemoglobinemia in a toddler secondary to topical dapsone exposure. Pediatrics. 2016;138(2).

  95. Yale S, Stefanko N, McCarthy P, McFadden V, McCarthy J. Severe methemoglobinemia due to topical dapsone misuse in a teenage girl. Pediatr Dermatol. 2020;37(2):377–8.

    PubMed  Google Scholar 

  96. Osborne DW. Composition and methods for topical application of therapeutic agents. United States: United States Patent Office; 5,863,560, 1999. p. 9.

  97. Osborne DW. Compositions and methods for topical application of therapeutic agents. United States: United States Patent Office; 6,060,085, 2000. p. 9.

  98. Osborne DW. Topical dapsone for the treatment of acne. Canada: Canadian Intelectual Property Office; 2,776,702, 2002. p. 14.

  99. Warner KS, Parashar AP, Swaminathan V, Bhatt V, Kaoukhov A. Methods of treatment of acne vulgaris using topical dapsone compositions. United States: United States Patent Office; US 2017/0119703 A1, 2017. p. 28.

  100. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–66.

    CAS  PubMed  Google Scholar 

  101. Shamma RN, Salah Ad-din I, Abdeltawab NF. Dapsone- gel as a novel platform for acne treatment: in vitro evaluation and in vivo performance and histopathological studies in acne infected mice. J Drug Deliv Sci Technol. 2019;54(101238):1–7.

    Google Scholar 

  102. Kataoulis AC, Kakepis EM, Kintziu H, Kakepis ME, Stavrianeas NG. Comedogenicity of cosmetics: a review. J Eur Acad Dermatol Venereol. 1996;7(2):115–9.

    Google Scholar 

  103. Wohlrab J, Michael J. Dapsone for topical use in extemporaneous preparations. J Ger Soc Dermatol. 2018;16(1):34–40.

    Google Scholar 

  104. Marzuki NHC, Wahab RA, Hamid MA. An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip. 2019;33(1):779–97.

    CAS  Google Scholar 

  105. De A BVR, Simon A, ARC S, Cabral LM, de Sousa VP. Nanoemulsion containing dapsone for topical administration: a study of in vitro release and epidermal permeation. Int J Nanomedicine. 2013;8:535–44.

    Google Scholar 

  106. Mahore JG, Suryawashi SD, Shirolkar SV, Deshkar SS. Enhancement of percutaneous delivery of Dapsone by microemulsion gel. J Young Pharm. 2017;9(4):507–12.

    CAS  Google Scholar 

  107. Ranjbar M, Khazaeli P, Pardakhty A, Tahamipour B, Amanatfard A. Preparation of polyacrylamide/polylactic acid co-assembled core/shell nanofibers as designed beads for dapsone in vitro efficient delivery. Artif Cells, Nanomed Biotechnol. 2019;47(1):917–26.

    CAS  Google Scholar 

  108. Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.

    CAS  PubMed  Google Scholar 

  109. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructures lipid carriers structure, Preparation and Application. Adv Pharm Bull. 2015;5(3):305–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Deshkar SS, Bhalerao SG, Jadhav MS, Shirolkar SV. Formulation and optimization of topical solid lipid nanoparticles based gel of Dapsone using design of experiment. Pharm Nanotechnol. 2018;6(4):264–75.

    CAS  PubMed  Google Scholar 

  111. Fang C-L, A Alsuwayeh S, Fang J-Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol. 2013;7(1):41–55.

    CAS  PubMed  Google Scholar 

  112. Elmowafy M, Shalaby K, Ali HM, Alruwaili NK, Salama A, Ibrahim MF, et al. Impact of nanostructured lipid carriers on dapsone delivery to the skin: in vitro and in vivo studies. Int J Pharm. 2019;572(118781):1–11.

    Google Scholar 

  113. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.

    CAS  PubMed  Google Scholar 

  114. Cé R, Marchi JG, Bergamo VZ, Fuentefria AM, Lavayen V, Guterres SS, et al. Chitosan-coated dapsone-loaded lipid-core nanocapsules: growth inhibition of clinical isolates, multidrug-resistant Staphylococcus aureus and Aspergillus ssp. Colloids Surf A Physicochem Eng Asp. 2016;511:153–61.

    Google Scholar 

  115. Pereira RL, Leites FI, Paese K, Sponchiado RM, Michalowski CB, Guterres SS, et al. Hydrogel containing adapalene- and dapsone-loaded lipid-core nanocapsules for cutaneous application: development, characterization, in vitro irritation and permeation studies. Drug Dev Ind Pharm. 2016;46(12):2001–8.

    Google Scholar 

  116. Meraj Anjum M, Kanoujia J, Parashar P, Arya M, Yadav AK, Saraf SA. Evaluation of a polymer-lipid-polymer system utilising hybrid nanoparticles of dapsone as a novel antiacne agent. Curr Drug Ther. 2016;11(2):86–100.

    Google Scholar 

  117. Nvs M. Niosomes: a novel drug delivery system. Int J Res Pharm Chem. 2011;1(3):498–511.

    Google Scholar 

  118. Hatem AS, Fatma MM, Amal KH, Hossam MA-W, Maha HR. Dapsone in topical niosomes for treatment of acne vulgaris. Afr J Pharm Pharmacol. 2018;12(18):221–30.

    Google Scholar 

  119. Aflatoonian M, Fekri A, Rahnam Z, Khalili M, Pardakhti A, Khazaeli P, et al. The efficacy of combined topical niosomal dapsone gel and intralesional injection of meglumine antimoniate in comparison with intralesional meglumine antimoniate and cryotherapy in the treatment of cutaneous leishmaniasis. J Pakistan Assoc Dermatologists. 2016;26(4):353–60.

    Google Scholar 

  120. Fekri A, Rahnama Z, Khalili M, Dookhani AP, Khazaeli P, Beigi KB. The efficacy of co-administration of topical niosomal dapsone gel and intralesional injection of glucantime in cutaneous leishmaniasis in comparison with cryotherapy plus intralesional injection of glucantime. J Kerman Univ Med Sci. 2015;22(2):117–32.

    Google Scholar 

  121. Dragicevic N, Verma DD, Fahr A. Invasomes: vesicles for enhanced skin Delivery of drugs. In: Dragicevic N, Maibach H, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement. Berlin, Heidelberg: Springer; 2016. p. 77–92.

    Google Scholar 

  122. El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM. Dapsone-loaded invasomes as a potential treatment of acne: preparation, characterization, and in vivo skin deposition assay. AAPS PharmSciTech. 2018;19(5):2174–84.

    CAS  PubMed  Google Scholar 

  123. El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM. Bilosomes as a novel carrier for the cutaneous delivery for dapsone as a potential treatment of acne: preparation, characterization and in vivo skin deposition assay. J Liposome Res. 2020;30(1):1–11.

    CAS  PubMed  Google Scholar 

  124. Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biol Pharm Bull. 2007;30(2):350–3.

    CAS  PubMed  Google Scholar 

  125. Nithya R, Jerold P, Siram K. Cubosomes of dapsone enhanced permeation across the skin. J Drug Deliv Sci Technol. 2018;48(August):75–81.

    CAS  Google Scholar 

  126. Pelikh O, Stahr PL, Huang J, Gerst M, Scholz P, Dietrich H, et al. Nanocrystals for improved dermal drug delivery. Eur J Pharm Biopharm. 2018;128:170–8.

    CAS  PubMed  Google Scholar 

  127. Zhai X, Lademann J, Keck CM, Müller RH. Nanocrystals of medium soluble actives - novel concept for improved dermal delivery and production strategy. Int J Pharm. 2014;470(1–2):141–50.

    CAS  PubMed  Google Scholar 

  128. Vidlářová L, Romero GB, Hanuš J, Štěpánek F, Müller RH. Nanocrystals for dermal penetration enhancement - effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm. 2016;104:216–25.

    PubMed  Google Scholar 

  129. Lademann J, Richter H, Schanzer S, Knorr F, Meinke M, Sterry W, et al. Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm. 2011;77(3):465–8.

    CAS  PubMed  Google Scholar 

  130. Zhai X, Lademann J, Keck CM, Müller RH. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters. Eur J Pharm Biopharm. 2014;88(1):85–91.

    CAS  PubMed  Google Scholar 

  131. Müller RH, Gohla S, Keck CM. State of the art of nanocrystals - special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.

    PubMed  Google Scholar 

  132. Badilli U, Gumustas B, Uslu B, Ozkan SA. Lipid-based nanoparticles for dermal drug delivery. In: Grumezescu A, editor. Organic materials as smart nanocarriers for drug delivery. Cambridge: William Andrew; 2018. p. 369–413.

    Google Scholar 

  133. Lademann J, Knorr F, Richter H, Jung S, Meinke MC, Rühl E, et al. Hair follicles as a target structure for nanoparticles. J Innov Opt Health Sci. 2015;8(4):1–8.

    Google Scholar 

  134. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles - an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66(2):159–64.

    CAS  PubMed  Google Scholar 

  135. Patzelt A, Richter H, Knorr F, Schäfer U, Lehr CM, Dähne L, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150(1):45–8.

    CAS  PubMed  Google Scholar 

  136. Mangelsdorf S, Vergou T, Sterry W, Lademann J, Patzelt A. Comparative study of hair follicle morphology in eight mammalian species and humans. Skin Res Technol. 2014;20(2):147–54.

    PubMed  Google Scholar 

  137. Kartha VB, Patel ND, Venkateswaran S. Laser Raman spectroscopic studies on the interaction of drug Dapsone with model membranes. J Chem Sci. 1990;102(5):697–703.

    CAS  Google Scholar 

  138. Panicker L. Influence of the leprosy drug, dapsone on the model membrane dipalmitoyl phosphatidylethanolamine. Thermochim Acta. 2006;447(2):123–30.

    CAS  Google Scholar 

  139. Mittal A, Raber AS, Schaefer UF, Weissmann S, Ebensen T, Schulze K, et al. Non-invasive delivery of nanoparticles to hair follicles: A perspective for transcutaneous immunization. Vaccine. 2013;31(34):3442–51.

    CAS  PubMed  Google Scholar 

  140. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Vol. 14. Nanomedicine. 2019:93–126.

Download references

ACKNOWLEDGMENTS AND DISCLOSURE

Authors thank the Brazilian governmental agencies CNPq/MCTI (Universal 01/2016 - Grant number: 408229/2016-0) and CAPES/MEC for the financial support and fellowships, respectively. GSR would like to specifically thank CAPES for the fellowship PDEE PRINT-CAPES/UFSC call 06/PGFAR/2019. Declarations of Interest: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Caon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ǂ The patents CA 2,776,702 (98) and US 2017/0119703 A1 (99) also mention the preparation of DAP formulations other than gels, for instance suspension, cream, liquid, paste, lotion, nanoemulsion, microemulsion, reverse emulsion, liposomal cream and ointment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider-Rauber, G., Argenta, D.F. & Caon, T. Emerging Technologies to Target Drug Delivery to the Skin – the Role of Crystals and Carrier-Based Systems in the Case Study of Dapsone. Pharm Res 37, 240 (2020). https://doi.org/10.1007/s11095-020-02951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02951-4

KEY WORDS

Navigation