Skip to main content
Log in

Characterization of Phase Transformations for Amorphous Solid Dispersions of a Weakly Basic Drug upon Dissolution in Biorelevant Media

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The overall goal of this study was to investigate the dissolution performance and crystallization kinetics of amorphous solid dispersions (ASDs) of a weakly basic compound, posaconazole, dispersed in a pH-sensitive polymeric matrix consisting of hydroxypropyl methylcellulose acetate succinate (HPMC-AS), using fasted-state simulated media.

Methods

ASDs with three different drug loadings, 10, 25 and 50 wt.%, and the commercially available tablets were exposed to acidic media (pH 1.6), followed by transfer to, and dissolution in, intestinal media (pH 6.5). Parallel single stage dissolution experiments in only simulated intestinal media were also performed to better understand the impact of the gastric stage. Different analytical methods, including nanoparticle tracking analysis, powder x-ray diffraction, second harmonic generation and two-photon excitation ultraviolet fluorescence microscopy, were used to characterize the phase behavior of these systems at different stages of dissolution.

Results

Results revealed that all ASDs exhibited some degree of drug release upon suspension in acidic media, and were also vulnerable to matrix crystallization. Upon transfer to intestinal media conditions, supersaturation was observed. This was short-lived for some dispersions due to the release of the crystals formed in the acid immersion stage which acted as seeds for crystal growth. Lower drug loading ASDs also exhibited transient formation of amorphous nanodroplets prior to crystallization.

Conclusions

This work emphasizes the significance of assessing the impact of pH change on dissolution and provides a fundamental basis of understanding the phase behavior kinetics of ASDs of weakly basic drugs when formulated with pH sensitive polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ASDs:

Amorphous solid dispersions

FaSSGF:

Fasted-state simulated gastric fluid

FaSSIF:

Fasted-state simulated intestinal fluid

HPMC-AS:

Hydroxypropyl methylcellulose acetyl succinate

LLPS:

Liquid-liquid phase separation

NTA:

Nanoparticle tracking analysis

PXRD:

Powder X-ray diffraction

SHG:

Second harmonic generation

TPE-UVF:

Two-photon excitation ultraviolet fluorescence

References

  1. Lennernäs H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: Current status and future extension. J Pharm Pharmacol. 2005;57:273–85.

    Article  PubMed  CAS  Google Scholar 

  2. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  3. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.

    Article  CAS  PubMed  Google Scholar 

  4. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  5. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98:2549–72.

    Article  CAS  PubMed  Google Scholar 

  6. Guzmán HR, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Gardner CR, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci. 2007;96:2686–702.

    Article  PubMed  CAS  Google Scholar 

  7. Stella VJ, Nti-addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59:677–94.

    Article  CAS  PubMed  Google Scholar 

  8. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59:617–30.

    Article  CAS  PubMed  Google Scholar 

  9. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. Int J Pharm. 2011;419:1–11.

    Article  CAS  PubMed  Google Scholar 

  10. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17:397–404.

    Article  CAS  PubMed  Google Scholar 

  11. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101:1355–77.

    Article  CAS  PubMed  Google Scholar 

  12. Mullin JW. Crystallization: 4th edition. Oxford: Elsevier Butterworth-Heinemann; 2001.

    Google Scholar 

  13. Megrab NA, Williams AC, Barry BW. Oestradiol permeation through human skin and silastic membrane: effects of propylene glycol and supersaturation. J Control Release. 1995;36:277–94.

    Article  CAS  Google Scholar 

  14. Pellett MA, Castellano S, Hadgraft J, Davis AF. The penetration of supersaturated solutions of piroxicam across silicone membranes and human skin in vitro. J Control Release. 1997;46:205–14.

    Article  CAS  Google Scholar 

  15. Hou H, Siegel RA. Enhanced permeation of diazepam through artificial membranes from supersaturated solutions. J Pharm Sci. 2006;95:896–905.

    Article  CAS  PubMed  Google Scholar 

  16. Leveque N, Raghavan SL, Lane ME, Hadgraft J. Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro. Int J Pharm. 2006;318:49–54.

    Article  CAS  PubMed  Google Scholar 

  17. Psachoulias D, Vertzoni M, Goumas K, Kalioras V, Beato S, Butler J, et al. Precipitation in and supersaturation of contents of the upper small intestine after administration of two weak bases to fasted adults. Pharm Res. 2011;28:3145–58.

    Article  CAS  PubMed  Google Scholar 

  18. Shono Y, Jantratid E, Dressman JB. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: Case example nelfinavir. Eur J Pharm Biopharm. 2011;79:349–56.

    Article  CAS  PubMed  Google Scholar 

  19. Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: Understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res. 2013;30:3059–76.

    Article  CAS  PubMed  Google Scholar 

  20. Warren DB, Benameur H, Porter CJH, Colin W, Warren DB, Benameur H, et al. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: A mechanistic basis for utility. J Drug Target. 2010;18:704–31.

    Article  CAS  PubMed  Google Scholar 

  21. Hancock BC, Zografi G. The Relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11:471–7.

    Article  CAS  PubMed  Google Scholar 

  22. Aso Y, Yoshioka S. Molecular mobility of nifedipine – PVP and phenobarbital – PVP solid dispersions as measured by C-NMR spin-lattice relaxation time. J Pharm Sci. 2006;95:318–25.

    Article  CAS  PubMed  Google Scholar 

  23. Yuan X, Xiang T, Anderson BD, Munson EJ. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with Poly(vinylpyrrolidone) and Poly(vinylpyrrolidone-co-vinyl acetate) studied using C-13 solid-state NMR. Mol Pharm. 2015;12:4518–28.

    Article  CAS  PubMed  Google Scholar 

  24. Iqbal Z, Babar A, Ashraf M. Controlled-release naproxen using micronized ethyl cellulose by wet-granulation and solid-dispersion method. Drug Dev Ind Pharm. 2002;28:129–34.

    Article  CAS  PubMed  Google Scholar 

  25. Huang J, Wigent RJ, Schwartz JB. Nifedipine molecular dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blends for controlled drug delivery : effect of matrix composition. Drug Dev Ind Pharm. 2006;32:1185–97.

    Article  CAS  PubMed  Google Scholar 

  26. Desai J, Alexander K, Riga A. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int J Pharm. 2006;308:115–23.

    Article  CAS  PubMed  Google Scholar 

  27. Maulvi FA, Lakdawala DH, Shaikh AA, Desai AR, Choksi HH, Vaidya RJ, et al. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J Control Release. 2016;226:47–56.

    Article  CAS  PubMed  Google Scholar 

  28. Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J Control Release. 2015;211:85–93.

    Article  CAS  PubMed  Google Scholar 

  29. Hens B, Corsetti M, Spiller R, Marciani L, Vanuytsel T, Tack J, et al. Exploring gastrointestinal variables affecting drug and formulation behavior: Methodologies, challenges and opportunities. Int J Pharm. 2017;519:79–97.

    Article  CAS  PubMed  Google Scholar 

  30. Sugar AM, Liu X. In vitro and in vivo activities of SCH 56592 against Blastomyces dermatitidis. Antimicrob Agents Chemother. 1996;40:1314–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perfect JR, Cox GM, Dodge RK, Schell WA. In vitro and in vivo efficacies of the azole SCH56592 against Cryptococcus neoformans. Antimicrob Agents Chemother. 1996;40:1910–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lutz JE, Clemons KV, Aristizabal BH. Activity of the triazole SCH 56592 against disseminated murine coccidioidomycosis. Antimicrob Agents Chemother. 1997;41:1558–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Connolly P, Wheat J, Schnizlein-bick C, Durkin M, Kohler S, Smedema M, et al. Comparison of a new triazole antifungal agent , Schering 56592 , with itraconazole and amphotericin B for treatment of histoplasmosis in immunocompetent mice. Antimicrob Agents Chemother. 1999;43:322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sabatelli F, Patel R, Mann PA, Mendrick CA, Norris CC, Hare R, et al. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob Agents Chemother. 2006;50:2009–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Macedo-silva ST, Urbina JA, De Souza W, Cola J. In vitro activity of the antifungal azoles itraconazole and posaconazole against leishmania amazonensis. PLoS One. 2013;8:e83247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Döring M, Eikemeier M, Stanchi KMC. Antifungal prophylaxis with posaconazole vs . fluconazole or itraconazole in pediatric patients with neutropenia. Eur J Clin Microbiol Infect Dis. 2015;34:1189–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gubbins PO, Krishna G, Sansone-parsons A, Penzak SR, Dong L, Martinho M, et al. Pharmacokinetics and safety of oral posaconazole in neutropenic stem cell transplant recipients. Antimicrob Agents Chemother. 2006;50:1993–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lewis R, Hogan H, Howell A, Safdar A. Progressive fusariosis: Unpredictable posaconazole bioavailability, and feasibility of recombinant interferon-gamma plus granulocyte macrophage-colony stimulating factor for refractory disseminated infection. Leuk Lymphoma. 2008;49:163–5.

    Article  CAS  PubMed  Google Scholar 

  40. Dolton MJ, Ray JE, Marriott D, Mclachlan AJ. Posaconazole exposure-response relationship: evaluating the utility of therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56:2806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lipp H. Clinical pharmacodynamics and pharmacokinetics of the antifungal extended-spectrum triazole posaconazole: an overview. Br J Clin Pharmacol. 2010;70:471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Courtney R, Wexler D, Radwanski E, Lim J, Laughlin M. Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol. 2003;57:218–22.

    Article  Google Scholar 

  43. Krishna G, Moton A, Ma L, Medlock MM, Mcleod J. Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers. Antimicrob Agents Chemother. 2015;53:958–66.

    Article  CAS  Google Scholar 

  44. Hens B, Brouwers J, Corsetti M, Augustijns P. Supersaturation and precipitation of posaconazole upon entry in the upper small intestine in humans. J Pharm Sci. 2016;105:2677–84.

    Article  CAS  PubMed  Google Scholar 

  45. Fang LY, Wan J, Harris D. Oral Pharmaceutical Compositions in a Solid Dispersion Comprising Preferably Posaconazole and HPMCAS. United States Patent; US20110034478A1. 2011. p. 1–10.

  46. Hens B, Corsetti M, Brouwers J, Augustijns P. Gastrointestinal and systemic monitoring of posaconazole in humans after fasted and fed state administration of a solid dispersion. J Pharm Sci. 2016;105:2904–12.

    Article  CAS  PubMed  Google Scholar 

  47. Mathias NR, Xu Y, Patel D, Grass M, Caldwell B, Jager C, et al. Assessing the risk of pH-dependent absorption for new molecular entities: a novel in vitro dissolution test, physicochemical analysis, and risk assessment strategy. Mol Pharm. 2013;10:4063–73.

    Article  CAS  PubMed  Google Scholar 

  48. Mann J, Dressman J, Rosenblatt K, Ashworth L, Muenster U, Frank K, et al. Validation of dissolution testing with biorelevant media : an OrBiTo study. Mol Pharm. 2017;14:4192–201.

    Article  CAS  PubMed  Google Scholar 

  49. Raina SA, Alonzo DE, Zhang GGZ, Gao Y, Taylor LS. Using environment-sensitive fluorescent probes to characterize liquid-liquid phase separation in supersaturated solutions of poorly water soluble compounds. Pharm Res. 2015;32:3660–73.

    Article  CAS  PubMed  Google Scholar 

  50. Xie T, Gao W, Taylor LS. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate , supersaturation , precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int J Pharm. 2017;531:313–23.

    Article  CAS  PubMed  Google Scholar 

  51. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25:1663–76.

    Article  CAS  PubMed  Google Scholar 

  52. Wanapun D, Kestur US, Kissick DJ, Simpson GJ, Taylor LS. Selective detection and quantitation of organic molecule crystallization by second harmonic generation microscopy. Anal Chem. 2010;82:5425–32.

    Article  CAS  PubMed  Google Scholar 

  53. Kissick DJ, Wanapun D, Simpson GJ. Second-order nonlinear optical imaging of chiral crystals. Annu Rev Anal Chem. 2011;4:419–37.

    Article  CAS  Google Scholar 

  54. Kestur US, Wanapun D, Toth SJ, Wegiel LA, Simpsonc GJ, Taylor LS. Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders. J Pharm Sci. 2012;101:4201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Merck Sharp & Dohme Corp. Product information - Noxafil® (posaconazole) - modified release 100 mg tablets and 40 mg/mL oral suspension. 2006. p. 1–38.

  56. Leung S, Poulakos MN, Machin J. Posaconazole: an update of its clinical use. Pharmacy. 2015;3:210–68.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ : 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kourentas A, Vertzoni M, Barmpatsalou V, Augustijns P, Beato S, Butler J, et al. The BioGIT system: a valuable in vitro tool to assess the impact of dose and formulation on early exposure to low solubility drugs after oral administration. AAPS J The AAPS Journal. 2018;20:1–12.

    Article  CAS  Google Scholar 

  59. Lakowicz JR. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum; 1999.

    Book  Google Scholar 

  60. Rodriguez-navarro C, Linares-fernandez L, Doehne E, Sebastian E. Effects of ferrocyanide ions on NaCl crystallization in porous stone. J Cryst Growth. 2002;243:503–16.

    Article  CAS  Google Scholar 

  61. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc. 1997;80:3157–71.

    Article  CAS  Google Scholar 

  62. Lafferre L, Garcia E, Hoff C, De Luminy C. Phase transitions in supersaturated drug solution. Org Process Res Dev. 2003;7:983–9.

    Article  CAS  Google Scholar 

  63. Jackson MJ, Toth SJ, Kestur US, Huang J, Qian F, Hussain MA, et al. Impact of polymers on the precipitation behavior of highly supersaturated aqueous danazol solutions. Mol Pharm. 2014;11:3027–38.

    Article  CAS  PubMed  Google Scholar 

  64. Alonzo DE, Zhang GGZ, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27:608–18.

    Article  CAS  PubMed  Google Scholar 

  65. Raina SA, Zhang GGZ, Alonzo DE, Wu J, Zhu D, Catron ND, et al. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. J Pharm Sci. 2014;103:2736–48.

    Article  CAS  PubMed  Google Scholar 

  66. Shin-Etsu. Shin-Etsu AQOAT® (Hypromellose Acetate Succinate) [Internet]. http://www.metolose.jp/en/pharmaceutical/aqoat.html. Accessed 6 Sep 2019.

  67. Hilton AK, Deasy PB. Use of hydroxypropyl methylcellulose acetate succinate in an enteric polymer matrix to design controlled-release tablets of amoxicillin trihydrate. J Pharm Sci. 1993;82:737–43.

    Article  CAS  PubMed  Google Scholar 

  68. Fukui E, Miyamura N, Kobayashi M. An in vitro investigation of the suitability of press-coated tablets with hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydrophobic additives in the outer shell for colon targeting. J Control Release. 2001;70:97–107.

    Article  CAS  PubMed  Google Scholar 

  69. Li N, Taylor LS. Tailoring supersaturation from amorphous solid dispersions. J Control Release. 2018;279:114–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Davis SS, Hardy JG, Taylor MJ, Whalley DR. A comparative study of the gastrointestinal transit of a pellet and tablet formulation. Int J Pharm. 1984;21:167–77.

    Article  CAS  Google Scholar 

  71. Mojaverian P, Ferguson RK, Vlasses PH, Rocci ML, Oren A, Fix JA, et al. Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition. Gastroenterology. 1985;89:392–7.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge the National Science Foundation for their financial support for this research through research grants CHE-1412888 and DMR-1309218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkhabaz, A., Sarkar, S., Simpson, G.J. et al. Characterization of Phase Transformations for Amorphous Solid Dispersions of a Weakly Basic Drug upon Dissolution in Biorelevant Media. Pharm Res 36, 174 (2019). https://doi.org/10.1007/s11095-019-2718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2718-0

Key words

Navigation