Skip to main content

Advertisement

Log in

Sustained Release from Ionic-Gradient Liposomes Significantly Decreases ETIDOCAINE Cytotoxicity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Etidocaine (EDC) is a long lasting local anesthetic, which alleged toxicity has restricted its clinical use. Liposomes can prolong the analgesia time and reduce the toxicity of local anesthetics. Ionic gradient liposomes (IGL) have been proposed to increase the upload and prolong the drug release, from liposomes.

Methods

First, a HPLC method for EDC quantification was validated. Then, large unilamellar vesicles composed of hydrogenated soy phosphatidylcholine:cholesterol with 250 mM (NH4)2SO4 - inside gradient - were prepared for the encapsulation of 0.5% EDC. Dynamic light scattering, nanotracking analysis, transmission electron microscopy and electron paramagnetic resonance were used to characterize: nanoparticles size, polydispersity, zeta potential, concentration, morphology and membrane fluidity. Release kinetics and in vitro cytotoxicity tests were also performed.

Results

IGLEDC showed average diameters of 172.3 ± 2.6 nm, low PDI (0.12 ± 0.01), mean particle concentration of 6.3 ± 0.5 × 1012/mL and negative zeta values (−10.2 ± 0.4 mV); parameters that remain stable during storage at 4°C. The formulation, with 40% encapsulation efficiency, induced the sustained release of EDC (ca. 24 h), while reducing its toxicity to human fibroblasts.

Conclusion

A novel formulation is proposed for etidocaine that promotes sustained release and reduces its cytotoxicity. IGLEDC can come to be a tool to reintroduce etidocaine in clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Cho:

Cholesterol

DDS:

Drug delivery system

DLS:

Dynamic light scattering

EDC:

Etidocaine

EPR:

Electron paramagnetic resonance

HSPC:

Hydrogenated soy phosphatidylcholine

IC50 :

Half maximal inhibitory concentration of cell viability

IGL:

Ionic gradient liposomes

IGLEDC :

Etidocaine-containing sulphate gradient liposomes

LA:

Local anesthetic

LUV:

Large unilamellar vesicle

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NTA:

Nanotracking analysis

TEM:

Transmission electron microscopy

References

  1. Wang G-K, Strichartz GR. State-dependent inhibition of sodium channels by local anesthetics: a 40-year evolution. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2012;6(2):120–7.

    Article  Google Scholar 

  2. Lirk P, Picardi S, Hollmann MW. Local anaesthetics: 10 essentials. Eur J Anaesthesiol. 2014;31(11):575–85.

    Article  CAS  Google Scholar 

  3. Strichartz GR, Sanchez V, Arthur GR, Chafetz R, Martin D. Fundamental properties of local anesthetics. II. Measured octanol: buffer partition coefficients and pKa values of clinically used drugs. Anesth Analg. 1990;71(2):158–70.

    Article  CAS  Google Scholar 

  4. Covino BG, Vassalo HG. Local anesthetics: mechanisms of action and clinical use. Rio de Janeiro: Colina Editora; 1985.

    Google Scholar 

  5. Garciat DG. Etidocaine - a long-acting anesthestic agent: review of the literature. Anesth Prog. 1972;29(1):12–3.

    Google Scholar 

  6. Lund P, Cewik J, Gannon R. Etidocaine (Duranest®): a clinical and laboratory evaluation. Acta Anaesthesiol Scand Suppl. 1974;18(3):176–88.

    Article  CAS  Google Scholar 

  7. Discontinued Drug Product List. US food and drug administration. Docket n° 2008-P-0527. September 25th, 2008. Available from: https://www.accessdata.fda.gov/scripts/cder/ob/results_product.cfm?Appl_Type=N&Appl_No=017751. Acessed March 02, 2018.

  8. Determination that Duranest® (etidocaine hydrochloride) injection, 0.5%, and five other Duranest® drug products were not withdrawn from sale for reasons of safety or effectiveness. FR. Federal Register / Vol. 77, No. 49 / March 13th, 2012 / Notices T. Vol. 77. 2012.

  9. Allen T, Cullins P. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.

    Article  CAS  Google Scholar 

  10. Santamaria CM, Woodruff A, Yang R, Kohane DS. Drug delivery systems for prolonged duration local anesthesia. Mater Today. 2017;20(1):22–31.

    Article  CAS  Google Scholar 

  11. Grant GJ, Barenholz Y, Piskoun B, Bansinath M, Turndorf H, Bolotin EM. DRV liposomal bupivacaine: preparation, characterization, and in vivo evaluation in mice. Pharm Res. 2001;18(3):336–43.

    Article  CAS  Google Scholar 

  12. de Paula E, Cereda CMS, Fraceto LF, de Araújo DR, Franz-Montan M, Tofoli GR, et al. Micro and nanosystems for delivering local anesthetics. Expert Opin Drug Deliv. 2012;9(12):1505–24.

  13. Mura P, Capasso G, Maestrelli F, Furlanetto S. Optimization of formulation variables of benzocaine liposomes using experimental design. J Liposome Res. 2008;18(2):113–25.

    Article  CAS  Google Scholar 

  14. Akbarzadeh A, Rezaei-sadabady R, Davaran S, Joo SW, Zarghami N. Liposome : classification, preparation, and applications. Nanoescale Res Lett. 2013;8(1):102.

    Article  Google Scholar 

  15. da Silva CMG, Franz-Montan M, Limia CEG, Ribeiro LN de M, Braga MA, Guilherme VA, et al. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient) liposomal system promotes extended anesthesia time. PLoS One. 2017;12(10):1–16.

    Google Scholar 

  16. Barenholz Y, Haran G. Method of amphiphatic drug loading in liposome by amonium ion gradient. US Patent. 1994;5:316–771.

    Google Scholar 

  17. Bolotin EM, Cohen R, Bar LK, Emanuel N, Ninio S, Barenholz Y, et al. Ammonium sulfate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res. 1994;4(1):455–79.

    Article  Google Scholar 

  18. Grant GJ, Barenholz Y, Bolotin EM, Bansinath M, Turndorf H, Piskoun B, et al. A novel liposomal bupivacaine formulation to produce ultralong-acting analgesia. Anesthesiology. 2004;101(1):133–7.

    Article  CAS  Google Scholar 

  19. Clerc S, Barenholz Y. Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. BBA - Biomembr. 1995;1240(2):257–65.

    Article  Google Scholar 

  20. da Silva CMG, Fraceto LF, Franz-Montan M, Couto VM, Casadei BR, Cereda CMS, et al. Development of egg PC/cholesterol/α-tocopherol liposomes with ionic gradients to deliver ropivacaine. J Liposome Res. 2016;26(1):1–10.

    Article  CAS  Google Scholar 

  21. de Paula E, Schreier S. Use of a novel method for determination of partition coefficients to compare the effect of local anesthetics on membrane structure. Biochim Biophys Acta. 1995;1240(1):25–33.

    Article  Google Scholar 

  22. ICH. Validation of analytical procedures: text and methodology Q2(R1). Geneva: Intl Conf. Harmon; 2005.

    Google Scholar 

  23. Tu S, Mcginnis T, Krugner-Higby L, Heath TD. A mathematical relationship for hydromorphone loading into liposomes with trans-membrane ammonium sulfate gradients. J Pharm Sci. 2010;99(6):2672–80.

    Article  CAS  Google Scholar 

  24. Chen PS, Toribara TY, Warner H, Chen PS Jr, Toribara TY, Warner H. Microdetermination of phosphorus. Anal Chem. 1956;28(11):1756–8.

    Article  CAS  Google Scholar 

  25. Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470–5.

    CAS  Google Scholar 

  26. Zucker D, Marcus D, Barenholz Y, Goldblum A. Liposome drug’s loading efficiency: a working model based on loading conditions and drug’s physicochemical properties. J Control Release. 2009;139(1):73–80.

    Article  CAS  Google Scholar 

  27. Hubbell WL, McConnell HM. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971;93(2):314–26.

    Article  CAS  Google Scholar 

  28. Schreier S, Polnaszek CF, Smith I. Spin labels in membranes problems in practice. Biochim Biophys Acta. 1978;515(4):395–436.

    Article  CAS  Google Scholar 

  29. Franz TJ. Percutaneous absorption. On the relevance of in vitro data. J Invest Dermatol. 1975;64(3):190–5.

    Article  CAS  Google Scholar 

  30. Mendyk A, Jachowicz R. Unified methodology of neural analysis in decision support systems built for pharmaceutical technology. Expert Syst Appl. 2007;32(4):1124–31.

    Article  Google Scholar 

  31. Ribeiro LNM, Franz-Montan M, Breitkreitz MC, Alcântara ACS, Castro SR, Guilherme VA, et al. Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry. Eur J Pharm Sci. 2016;93:192–202.

    Article  CAS  Google Scholar 

  32. Martinez EF, Araújo VC. In vitro immunoexpression of extracellular matrix proteins in dental pulpal and gingival human fibroblasts. Int Endod J. 2004;37(11):749–55.

    Article  CAS  Google Scholar 

  33. Gasco MR. Lipid nanoparticles: perspectives and challenges. Adv Drug Deliv Rev. 2007;59(6):377–8.

    Article  CAS  Google Scholar 

  34. Mohanraj V, Chen Y, Chen M. Nanoparticles – a review. Trop J Pharm Res Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  35. Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337–51.

    Article  CAS  Google Scholar 

  36. Fraceto LF, Spisni A, Schreier S, de Paula E. Differential effects of uncharged aminoamide local anesthetics on phospholipid bilayers, as monitored by 1H-NMR measurements. Biophys Chem. 2005;115(1):11–8.

  37. Ribeiro LNM, Couto VM, Fraceto LF, De Paula E. Use of nanoparticle concentration as a tool to understand the structural properties of colloids. Sci Rep. 2018;8(1):1–8.

    Article  Google Scholar 

  38. Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. BBA - Biomembr. 1993;1151(2):201–15.

    Article  CAS  Google Scholar 

  39. de Paula E, Schreier S, Jarrell HC, Fraceto LF. Preferential location of lidocaine and etidocaine in lecithin bilayers as determined by EPR, fluorescence and 2H NMR. Biophys Chem. 2008;132(1):47–54.

    Article  Google Scholar 

  40. Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv. 2011;8(5):565–80.

    Article  CAS  Google Scholar 

  41. Yeagle PL. The structure of biological membranes. 3rd ed. Boca Raton: CRC Rress; 2012.

    Google Scholar 

  42. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2014;10:81–98.

    Article  CAS  Google Scholar 

  43. Zhong H, Deng Y, Wang X, Yang B. Multivesicular liposome formulation for the sustained delivery of breviscapine. Int J Pharm. 2005;301(1–2):15–24.

    Article  CAS  Google Scholar 

  44. Grant SA. The holy grail: long-acting local anaesthetics and liposomes. Best Pract Res Clin Anaesthesiol. 2002;16(2):345–52.

    Article  CAS  Google Scholar 

  45. Couto VM, Prieto MJ, Igartúa DE, Feas DA, Ribeiro LN, Silva CM, et al. Dibucaine in ionic-gradient liposomes: biophysical, toxicological and activity characterisation. J Pharm Sci. 2018;107:2411–9.

    Article  CAS  Google Scholar 

  46. Costa P, Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  Google Scholar 

  47. Malheiros SVP, Pinto LMA, Gottardo L, Yokaichiya DK, Fraceto LF, Meirelles NC, et al. A new look at the hemolytic effect of local anesthetics, considering their real membrane/water partitioning at pH 7.4. Biophys Chem. 2004;110(3):213–21.

    Article  CAS  Google Scholar 

  48. Adade AB, Chignell D, Vanderkooi G. Local anesthetics: a new class of partial inhibitors of mitochondrial ATPase. J Bioenerg Biomembr. 1984;16(5–6):353–63.

    Article  CAS  Google Scholar 

  49. Chang Y-C, Liu C-L, Chen M-J, Hsu Y-W, Chen S-N, Lin C-H, et al. Local anesthetics induce apoptosis in human breast tumor cells. Anesth Analg. 2014;118(1):116–24.

    Article  CAS  Google Scholar 

  50. Torchilin VP. Interview with Vladimir P Torchilin: liposomal carriers for drug delivery. Ther Deliv. 2013;4(5):537–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eneida de Paula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, J.D., Ribeiro, L.N.d., Rodrigues da Silva, G.H. et al. Sustained Release from Ionic-Gradient Liposomes Significantly Decreases ETIDOCAINE Cytotoxicity. Pharm Res 35, 229 (2018). https://doi.org/10.1007/s11095-018-2512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2512-4

KEY WORDS

Navigation