Skip to main content

Advertisement

Log in

Improving Plasma Stability and Bioavailability In Vivo of Gemcitabine Via Nanoparticles of mPEG-PLG-GEM Complexed with Calcium Phosphate

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Despite being widely used for the treatment of several solid tumors, Gemcitabine (GEM) exhibits several suboptimal pharmacokinetic properties. Therefore, the design of nanoparticle delivery systems is a promising strategy to enhance GEM pharmacokinetic properties.

Methods

In this work, the polymeric material methoxy poly(ethylene glycol)-block-poly(L-glutamic acid)-graft-gemcitabine (mPEG-b-PLG-g-GEM) was synthesized through the covalent conjugation of GEM with the carboxylic group of methoxy poly(ethylene glycol)-block-poly (L-glutamic acid) (mPEG-b-PLG) (mPEG113, Mn = 5000). mPEG-PLG-GEM/CaP nanoparticles were prepared through the simple mixing of calcium and phosphate/mPEG-PLG-GEM solutions. mPEG-PLG-GEM was embedded in the calcium phophate (CaP) backbone via electrostatic interactions.

Results

After incubation in plasma at 37°C for 24 h, gemcitabine was degraded by 24.6% for the mPEG-PLG-GEM, 14.7% for the mPEG-PLG-GEM/CaP nanoparticles, and 90% for the free gemcitabine solution. It was observed that mPEG-PLG-GEM and mPEG-PLG-GEM/CaP improved the area-under-curve (AUC) values by 5.26-fold and 6.33-fold compared to free drug, respectively.

Conclusion

The amide bond linked gemcitabine polymers was able to protect GEM from cytidine deaminase degradation in vivo, and the skeleton formed by the calcium phosphate enhanced the stability and prolonged the half-life of GEM. Importantly, mPEG-PLG-GEM/CaP nanoparticles elevated the GEM plasma concentration in an animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CDA:

Cytidine deaminase

dCK:

Deoxycytidine kinase

dCTD:

Deoxycytidylate deaminase

dFdC:

Difluorodeoxycytidine

dFdCTP:

Deoxycytidine 5′-triphosphate

dFdU:

Diflurodeoxyuridine

dFdUMP:

Di-fluorodeoxyuridine monophosphate

DLC:

Drug loading content

DLS:

Dynamic laser light scattering

EDS:

Energy Dispersive Spectroscopy

FT-IR:

Fourier transform infrared spectroscopy

HPLC:

High Performance Liquid Chromatography

IR:

Infrared Radiation

LC / MS:

Liquid chromatography-mass spectrometry

PK:

Pharmacokinetics

PLG-g-mPEG:

Poly(Lglutamic acid)-g-methoxy poly(ethylene glycol) copolymer

PBS:

Phosphate buffered saline

TEM:

Transmission electron microscopy

UV-Vis:

Ultra-violet-visible

XRD:

X-ray Diffraction

References

  1. Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7(3):163–72.

    Article  CAS  Google Scholar 

  2. Xu H, Paxton JW, Wu Z. Development of long-circulating pH-sensitive liposomes to circumvent gemcitabine resistance in pancreatic cancer cells. Pharm Res. 2016;33(7):1628–37.

    Article  CAS  Google Scholar 

  3. Anderson H, Lund B, Bach F, Thatcher N, Walling J, Hansen HH. Single-agent activity of weekly gemcitabine in advanced non-small-cell lung cancer: a phase II study. J Clin Oncol Off J Am Soc Clin Oncol. 1994;12(9):1821–6.

    Article  CAS  Google Scholar 

  4. Li M, Li H, Cheng X, Wang X, Li L, Zhou T, et al. Preclinical pharmacokinetic/pharmacodynamic models to predict schedule-dependent interaction between erlotinib and gemcitabine. Pharm Res. 2013;30(5):1400–8.

    Article  CAS  Google Scholar 

  5. Carmichael J, Possinger K, Phillip P, Beykirch M, Kerr H, Walling J, et al. Advanced breast cancer: a phase II trial with gemcitabine. J Clin Oncol. 2012;13(11):2731–6.

    Article  Google Scholar 

  6. Stadler WM, Kuzel T, Roth B, Raghavan D, Dorr FA. Phase II study of single-agent gemcitabine in previously untreated patients with metastatic urothelial cancer. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15(11):3394–8.

    Article  CAS  Google Scholar 

  7. Dyawanapelly S, Kumar A, Chourasia MK. Lessons learned from gemcitabine: impact of therapeutic carrier systems and gemcitabine’s drug conjugates on cancer therapy. Crit Rev Ther Drug Carrier Syst. 2017;34(1):63–96.

    Article  Google Scholar 

  8. Ma D, Wang J, Hao X, Wang Y, Hu X, Xing P, et al. 70PA retrospective analysis to explore the value of gemcitabine combined with cisplatin as adjuvant chemotherapy of NSCLC. Ann Oncol. 2017;28(suppl_2).

  9. Chan S, Romieu G, Huober J, Delozier T, Tubiana-Hulin M, Schneeweiss A, Lluch A, Llombart A, du Bois A, Kreienberg R, et al. Phase III study of gemcitabine plus docetaxel compared with capecitabine plus docetaxel for anthracycline-pretreated patients with metastatic breast cancer. J Clin Oncol. 2009;21(1):1753–1760.

    Article  CAS  Google Scholar 

  10. Ejb D, Adr H, Rosing H, Jhm S, Beijnen JH. Intracellular pharmacokinetics of gemcitabine, its deaminated metabolite 2′,2′-difluorodeoxyuridine and their nucleotides. Br J Clin Pharmacol. 2018.

  11. Yong WP. Clinical pharmacology and pharmacogenetics of gemcitabine. Drug Metab Rev. 2009;41(2):77.

    Article  Google Scholar 

  12. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, et al. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res. 1992;52(3):533–9.

    CAS  PubMed  Google Scholar 

  13. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17(suppl_5):v7–v12.

    Article  Google Scholar 

  14. Grunewald R, Kantarjian H, Keating MJ, Abbruzzese J, Tarassoff P, Plunkett W. Pharmacologically directed design of the dose rate and schedule of 2′,2′-difluorodeoxycytidine (gemcitabine) administration in leukemia. Cancer Res. 1990;50(21):6823–6.

    CAS  PubMed  Google Scholar 

  15. Dubey RD, Saneja A, Gupta PK, Gupta PN. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur J Pharm Sci. 2016;93:147–62.

    Article  CAS  Google Scholar 

  16. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, et al. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol. 1991;9(3):491–8.

    Article  CAS  Google Scholar 

  17. Haperen VWTRV, Veerman G, Boven E, Noordhuis P, Vermorken JB, Peters GJ. Schedule dependence of sensitivity to 2′,2′-difluorodeoxycytidine (gemcitabine) in relation to accumulation and retention of its triphosphate in solid tumour cell lines and solid tumours. Biochem Pharmacol. 1994;48(7):1327–39.

    Article  CAS  Google Scholar 

  18. Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat. 2002;5(1):19–33.

    Article  CAS  Google Scholar 

  19. Caloro M, Lionetto L, Cuomo I, Simonetti A, Pucci D, Persis SD, et al. An improved simple LC–MS/MS method for the measurement of serum aripiprazole and its major metabolite. J Pharm Biomed Anal. 2012;62(6):135–9.

    Article  CAS  Google Scholar 

  20. Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release. 2010;142(3):416–21.

    Article  CAS  Google Scholar 

  21. And YK, Kataoka K. Block copolymer self-assembly into monodispersive nanoparticles with hybrid core of antisense DNA and calcium phosphate. Langmuir. 2015;18(12):4539–43.

    Google Scholar 

  22. Zhang Y, Kim WY, Huang L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials. 2013;34(13):3447–58.

    Article  CAS  Google Scholar 

  23. Sloat BR, Sandoval MA, Li D, Chung WG, DSP L-P, Proteau PJ, et al. In vitro and in vivo anti-tumor activities of a gemcitabine derivative carried by nanoparticles. Int J Pharm. 2011;409(1):278–88.

    Article  CAS  Google Scholar 

  24. Wang WW, Li C, Zhang J, Dong AJ, Kong DL. Tailor-made gemcitabine prodrug nanoparticles from well-defined drug-polymer amphiphiles prepared by controlled living radical polymerization for cancer chemotherapy. J Mater Chem B. 2014;2(13):1891–901.

    Article  CAS  Google Scholar 

  25. Vandana M, Sahoo SK. Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials. 2010;31(35):9340–56.

    Article  CAS  Google Scholar 

  26. Zhu S, Lansakara-P DS, Li X, Cui Z. Lysosomal delivery of a lipophilic gemcitabine prodrug using novel acid-sensitive micelles improved its antitumor activity. Bioconjug Chem. 2012;23(5):966–80.

    Article  CAS  Google Scholar 

  27. Cavallaro G, Licciardi M, Salmaso S, Caliceti P, Gaetano G. Folate-mediated targeting of polymeric conjugates of gemcitabine. Int J Pharm. 2006;307(2):258–69.

    Article  CAS  Google Scholar 

  28. Yu H, Tang Z, Li M, Song W, Zhang D, Zhang Y, et al. Cisplatin loaded poly (L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for potential cancer therapy: preparation, in vitro and in vivo evaluation. J Biomed Nanotechnol. 2016;12(1):69–78.

    Article  CAS  Google Scholar 

  29. Yu H, Tang Z, Zhang D, Song W, Zhang Y, Yang Y, et al. Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy. J Control Release. 2015;205:89–97.

    Article  CAS  Google Scholar 

  30. Warnant J, Marcotte N, Reboul J, Layrac G, Aqil A, Jerôme C, et al. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines. Anal Bioanal Chem. 2012;403(5):1395–404.

    Article  CAS  Google Scholar 

  31. Wu C, You J, Wang X. Thermal decomposition mechanism and kinetics of gemcitabine. J Anal Appl Pyrolysis. 2018;130:118–26.

    Article  CAS  Google Scholar 

  32. Ravindran S, Suthar JK, Rokade R, Deshpande P, Singh P, Pratinidhi A, et al. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr Drug Metab. 2018;19:327–34.

    Article  CAS  Google Scholar 

  33. Warnecke A, Fichtner I, Sass G, Kratz F. Synthesis, cleavage profile, and antitumor efficacy of an albumin-binding prodrug of methotrexate that is cleaved by plasmin and cathepsin B. Arch Pharm. 2010;340(8):389–95.

    Article  Google Scholar 

  34. Yang Z, Ma M, Xu B. Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation. Soft Matter. 2009;5(13):2546–8.

    CAS  Google Scholar 

  35. Koda D, Maruyama T, Minakuchi N, Nakashima K, Goto M. Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation. Chem Commun. 2010;46(6):979–81.

    Article  CAS  Google Scholar 

  36. Jin S, Wan J, Meng L, Huang X, Guo J, Liu L, et al. Biodegradation and toxicity of protease/redox/pH stimuli-responsive PEGlated PMAA nanohydrogels for targeting drug delivery. ACS Appl Mater Interfaces. 2015;7(35):19843–52.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We sincerely thank Amanda Pearce for the linguistic assistance during the revision of this manuscript.

Funding

This work was supported by the Financial Grant from China Postdoctoral Science Foundation (2016 M600216) and Foundation of Shenyang Pharmaceutical University (ZQN2016008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, W., Tian, P., Ding, N. et al. Improving Plasma Stability and Bioavailability In Vivo of Gemcitabine Via Nanoparticles of mPEG-PLG-GEM Complexed with Calcium Phosphate. Pharm Res 35, 230 (2018). https://doi.org/10.1007/s11095-018-2506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2506-2

KEY WORDS

Navigation