Skip to main content

Advertisement

Log in

Hyaluronic Acid Layer-By-Layer (LbL) Nanoparticles for Synergistic Chemo-Phototherapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to design hyaluronic acid (HA) layer-by-layer (LbL) nanoparticles, which carried paclitaxel (PTX) and Indocyanine green (ICG) to both tumor cells and tumor associated cells to achieve synergistic chemo-photothermal therapeutic effect.

Methods

The LbL-engineered nanoparticles (PDIH) were prepared by dopamine self-polymerization on PTX nanocrystal to form thin, surface-adherent polydopamine (PDA) films, which subsequently absorbed ICG and HA. The tumor cell and tumor associated cell targeting and antitumor efficacy of PDIH were investigated both in vitro an in vivo using 4 T1 murine mammary cancer cell lines and mice bearing orthotopic 4 T1 breast tumor.

Results

PDIH presented a long-rod shape in TEM and showed enhanced photothermal effect and cytotoxicity upon NIR laser irradiation both in vitro and in vivo. PDIH also displayed high target ability to CD44 overexpressed tumor cells and tumor associated cells mediated by HA. In vivo antitumor study indicated that PDIH therapeutic strategy could achieve remarkable antitumor efficacy.

Conclusion

PDIH showed excellent tumor-targeting property and chemo-photothermal therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scan microscopy

FDA:

The US food and drug administration

FITC:

Fluorescein-5(6)-isothiocyanate

HA:

Hyaluronic acid

ICG:

Indocyanine green

LbL:

Layer-by-layer

MTT:

Methyl thiazolyl tetrazolium

NIR:

Near infrared

PAI:

Photoacoustic imaging

PDA:

Polydopamine

PTX:

Paclitaxel

TAF:

Tumor associated fibroblast

TAM:

Tumor associated macrophage

TEM:

Transmission electron microscopy

Rererences

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Cao J, Chen D, Huang SS, Deng DW, Tang LP, Gu YQ. Multifunctional near-infrared light-triggered biodegradable micelles for chemo-and photo-thermal combination therapy. Oncotarget. 2016;7(50):82170–84.

    PubMed  PubMed Central  Google Scholar 

  3. Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    Article  PubMed  CAS  Google Scholar 

  4. Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, et al. Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano. 2013;7(3):2056–67.

    Article  PubMed  CAS  Google Scholar 

  5. Chen Y, Li H, Deng Y, Sun H, Ke X, Ci T. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater. 2017;51:374–92.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang L, Su H, Cai J, Cheng D, Ma Y, Zhang J, et al. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano. 2016;10(11):10404–17.

    Article  PubMed  CAS  Google Scholar 

  7. Zhao L, Yuan W, Tham HP, Chen H, Xing P, Xiang H, et al. Fast-clearable nanocarriers conducting chemo/photothermal combination therapy to inhibit recurrence of malignant tumors. Small. 2017;13(29)

  8. Li N, Li TT, Hu C, Lei XM, Zuo YP, Han HY. Targeted near-infrared fluorescent turn-on nanoprobe for activatable imaging and effective phototherapy of cancer cells. ACS Appl Mater Interfaces. 2016;8(24):15013–23.

    Article  PubMed  CAS  Google Scholar 

  9. Sherlock SP, Tabakman SM, Xie LM, Dai HJ. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano. 2011;5(2):1505–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhang ZJ, Wang LM, Wang J, Jiang XM, Li XH, Hu ZJ, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater. 2012;24(11):1418–23.

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Wang KY, Zhao JF, Liu XG, Bu J, Yan XY, et al. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc. 2013;135(12):4799–804.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng L, Wang C, Feng LZ, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114(21):10869–939.

    Article  PubMed  CAS  Google Scholar 

  13. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.

    Article  PubMed  CAS  Google Scholar 

  14. Shemesh CS, Moshkelani D, Zhang HL. Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer. Pharm Res-Dordr. 2015;32(5):1604–14.

    Article  CAS  Google Scholar 

  15. Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano. 2013;7(11):9571–84.

    Article  PubMed  CAS  Google Scholar 

  16. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.

    Article  PubMed  CAS  Google Scholar 

  17. Singh Y, Palombo M, Sinko PJ. Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem. 2008;15(18):1802–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S. Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev. 2016;99:52–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ming Y, Li Y, Xing H, Luo M, Li Z, Chen J, et al. Circulating tumor cells: from theory to nanotechnology-based detection. Front Pharmacol. 2017;8:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hida K, Ishii G. Editorial: Targeting tumor microenvironment heterogeneity. Adv Drug Deliv Rev. 2016;99(Pt B):139.

    Article  PubMed  CAS  Google Scholar 

  21. Huang WC, Chen SH, Chiang WH, Huang CW, Lo CL, Chern CS, et al. Tumor microenvironment-responsive nanoparticle delivery of chemotherapy for enhanced selective cellular uptake and transportation within tumor. Biomacromolecules. 2016;17(12):3883–92.

    Article  PubMed  CAS  Google Scholar 

  22. Reisfeld RA. The tumor microenvironment: a target for combination therapy of breast cancer. Crit Rev Oncog. 2013;18(1–2):115–33.

    Article  PubMed  Google Scholar 

  23. De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 2013;23(3):277–86.

    Article  PubMed  CAS  Google Scholar 

  24. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen BL, Dai WB, Mei D, Liua TZ, Li SX, He B, et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J Control Release. 2016;241:68–80.

    Article  PubMed  CAS  Google Scholar 

  26. Flach EH, Rebecca VW, Herlyn M, Smalley KSM, Anderson ARA. Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol Pharm. 2011;8(6):2039–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Song ML, Liu T, Shi CR, Zhang XZ, Chen XY. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward m1-like phenotype and attenuating tumor hypoxia. ACS Nano. 2016;10(1):633–47.

    Article  PubMed  CAS  Google Scholar 

  28. Kelkar SS, Hill TK, Marini FC, Mohs AM. Near infrared fluorescent nanoparticles based on hyaluronic acid: self-assembly, optical properties, and cell interaction. Acta Biomater. 2016;36:112–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. de la Rosa JM R, Tirella A, Gennari A, Stratford IJ, Tirelli N. The CD44-mediated uptake of hyaluronic acid-based carriers in macrophages. Adv Healthc Mater. 2017;6(4)

  30. Duff MD, Mestre J, Maddali S, Yan ZP, Stapleton P, Daly JM. Analysis of gene expression in the tumor-associated macrophage. J Surg Res. 2007;142(1):119–28.

    Article  PubMed  CAS  Google Scholar 

  31. Kinugasa Y, Matsui T, Takakura N. CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells. 2014;32(1):145–56.

    Article  PubMed  CAS  Google Scholar 

  32. Qi W, Yan X, Fei J, Wang A, Cui Y, Li J. Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials. 2009;30(14):2799–806.

    Article  PubMed  CAS  Google Scholar 

  33. Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277(5330):1232–7.

    Article  CAS  Google Scholar 

  34. Park J, Brust TF, Lee HJ, Lee SC, Watts VJ, Yeo Y. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano. 2014;8(4):3347–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dong ZL, Gong H, Gao M, Zhu WW, Sun XQ, Feng LZ, et al. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics. 2016;6(7):1031–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–115.

    Article  PubMed  CAS  Google Scholar 

  38. Hu DH, Zhang JN, Gao GH, Sheng ZH, Cui HD, Cai LT. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics. 2016;6(7):1043–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bi D, Zhao L, Yu R, Li H, Guo Y, Wang X, et al. Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy. Drug Deliv. 2018;25(1):564–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Park J, Sun B, Yeo Y. Albumin-coated nanocrystals for carrier-free delivery of paclitaxel. J Control Release. 2017;263:90–101.

    Article  PubMed  CAS  Google Scholar 

  41. Liu F, Park JY, Zhang Y, Conwell C, Liu Y, Bathula SR, et al. Targeted cancer therapy with novel high drug-loading nanocrystals. J Pharm Sci. 2010;99(8):3542–51.

    Article  PubMed  CAS  Google Scholar 

  42. Deng JX, Huang L, Liu F. Understanding the structure and stability of paclitaxel nanocrystals. Int J Pharm. 2010;390(2):242–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tan XX, Wang JP, Pang XJ, Liu L, Sun Q, You Q, et al. Indocyanine green-loaded silver nanoparticle@polyaniline core/shell theranostic nanocomposites for photoacoustic/near-infrared fluorescence imaging-guided and single-light-triggered photothermal and photodynamic therapy. ACS Appl Mater Interfaces. 2016;8(51):34991–5003.

    Article  PubMed  CAS  Google Scholar 

  44. Mehta SB, Carpenter JF, Randolph TW. Colloidal instability fosters agglomeration of subvisible particles created by rupture of gels of a monoclonal antibody formed at silicone oil-water interfaces. J Pharm Sci. 2016;105(8):2338–48.

    Article  PubMed  CAS  Google Scholar 

  45. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. P Natl Acad Sci USA. 1998;95(8):4607–12.

    Article  CAS  Google Scholar 

  46. Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomed-Nanotechnol. 2013;9(5):686–93.

    Article  CAS  Google Scholar 

  47. Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer. 2008;44(17):2546–54.

    Article  PubMed  CAS  Google Scholar 

  48. Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano. 2008;2(10):2075–84.

    Article  PubMed  CAS  Google Scholar 

  49. Wang YZ, Wang C, Ding Y, Li J, Li M, Liang X, et al. Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy. Colloid Surface B. 2016;148:533–40.

    Article  CAS  Google Scholar 

  50. Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000;45(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  51. Cai W, Gao HY, Chu CC, Wang XY, Wang JQ, Zhang PF, et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces. 2017;9(3):2040–51.

    Article  PubMed  CAS  Google Scholar 

  52. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zeng YY, Zhang D, Wu M, Liu Y, Zhang X, Li L, et al. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces. 2014;6(16):14266–77.

    Article  PubMed  CAS  Google Scholar 

  54. Stinchcombe TE, Socinski MA, Walko CM, O’Neil BH, Collichio FA, Ivanova A, et al. Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (Abraxane) on three treatment schedules in patients with solid tumors. Cancer Chemother Pharmacol. 2007;60(5):759–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 2005;23(28):7212–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by the Fundamental Research Funds for the Central Universities (20826041A4343) and China Postdoctoral Science Foundation (2017 M623051). No conflict of interest exits in the submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Song.

Electronic Supplementary Material

ESM 1

(DOCX 1488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wan, Z., Zhou, C. et al. Hyaluronic Acid Layer-By-Layer (LbL) Nanoparticles for Synergistic Chemo-Phototherapy. Pharm Res 35, 196 (2018). https://doi.org/10.1007/s11095-018-2480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2480-8

Key words

Navigation