Skip to main content
Log in

Elucidation of the Mechanism of Increased Activity of Immunostimulatory DNA by the Formation of Polypod-like Structure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We previously demonstrated that the immunostimulatory activity of CpG DNA is increased by the formation of polypod-like structures. The present study was designed to elucidate the mechanism underlying this increase.

Methods

Tripodna (three pods) and hexapodna (six pods) were prepared. The cellular uptake of Alexa Fluor 488-labeled DNA samples was examined in several cell lines by measuring the MFI of cells. TNF-α release from RAW264.7 cells was measured after addition of polypodna containing CpG motifs. Dissociation of double stranded DNA was evaluated using FRET.

Results

Tripodna and hexapodna were efficiently taken up by macrophage-like RAW264.7 cells and dendritic DC2.4 cells, but not by fibroblast or endothelial cell lines. The uptake by RAW264.7 cells was highest for hexapodna, followed by tripodna, dsDNA, and ssDNA. The release of TNF-α from RAW264.7 cells was also highest for hexapodna. The ratio of TNF-α release to cellular uptake was highest for ssDNA, and lowest for dsDNA. Tripodna and hexapodna were more easily dissociated into single strands after cellular uptake than was dsDNA.

Conclusions

The efficient cellular uptake and prompt dissociation into single strands can be directly related to the high immunostimulatory activity of polypod-like structured DNAs containing CpG motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

BHQ:

Black hole quencher

CpG DNA:

DNA containing unmethylated cytosine-phosphate-guanine dinucleotides

DAPI:

4′,6-diamino-2-phenylindole

DS:

Dextran sulfate

EtBr:

Ethidium bromide

FRET:

Fluorescence resonance energy transfer

MFI:

Mean fluorescence intensity

ODN:

Oligodeoxynucleotide

PAGE:

Polyacrylamide gel electrophoresis

PBMC:

Human peripheral blood mononuclear cells

Polypodna:

Polypod-like structured DNA

SR-A:

Type A scavenger receptor

TLR9:

Toll-like receptor 9

Tm:

Melting temperature

TNF:

Tumor necrosis factor.

References

  1. Nishikawa M, Rattanakiat S, Takakura Y. DNA-based nano-sized systems for pharmaceutical and biomedical applications. Adv Drug Deliv Rev. 2010;62:626–32.

    Article  CAS  PubMed  Google Scholar 

  2. Mohri K, Nishikawa M, Takahashi Y, Takakura Y. DNA nanotechnology-based development of delivery systems for bioactive compounds. Eur J Pharm Sci. 2014;58:26–33.

    Article  CAS  PubMed  Google Scholar 

  3. Charoenphol P, Bermudez H. Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol Pharm. 2014;11:1721–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsuoka N, Nishikawa M, Mohri K, Rattanakiat S, Takakura Y. Structural and immunostimulatory properties of Y-shaped DNA consisting of phosphodiester and phosphorothioate oligodeoxynucleotides. J Control Release. 2010;148:311–6.

    Article  CAS  PubMed  Google Scholar 

  5. Mohri K, Takahashi N, Nishikawa M, Kusuki E, Shiomi T, Takahashi Y, et al. Increased immunostimulatory activity of polypod-like structured DNA by ligation of the terminal loop structures. J Control Release. 2012;163:285–92.

    Article  CAS  PubMed  Google Scholar 

  6. Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine. 2012;7:2181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walsh AS, Yin H, Erben CM, Wood MJ, Turberfield AJ. DNA cage delivery to mammalian cells. ACS Nano. 2011;5:5427–32.

    Article  CAS  PubMed  Google Scholar 

  8. Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation. J Control Release. 2010;144:221–6.

    Article  CAS  PubMed  Google Scholar 

  9. Mohri K, Morimoto N, Maruyama M, Nakamoto N, Hayashi E, Nagata K, et al. Potential of D-Octaarginine-Linked Polymers as an in Vitro Transfection Tool for Biomolecules. Bioconjug Chem. 2015;26:1782–90.

    Article  CAS  PubMed  Google Scholar 

  10. Krieg AM. CpG Motifs in Bacterial DNA and Their Immune Effects. Annu Rev Immunol. 2002;20:709–60.

    Article  CAS  PubMed  Google Scholar 

  11. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.

    Article  CAS  PubMed  Google Scholar 

  12. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A. 1996;93:2879–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sparwasser T, Miethke T, Lipford G, Erdmann A, Häcker H, Heeg K, et al. Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol. 1997;27:1671–9.

    Article  CAS  PubMed  Google Scholar 

  14. Vollmer J, Krieg AM. Immunotherapeutic Applications of CpG Oligodeoxynucleotide TLR9 Agonists. Adv Drug Deliv Rev. 2009;61:195–204.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta GK, Agrawal DK. CpG Oligodeoxynucleotides as TLR9 Agonists: Therapeutic Application in Allergy and Asthma. BioDrugs. 2010;24:225–35.

    Article  CAS  PubMed  Google Scholar 

  16. Klinman DM. Immunotherapeutic Uses of CpG Oligodeoxynucleotides. Nat Rev Immunol. 2004;4:249–58.

    Article  CAS  PubMed  Google Scholar 

  17. Krieg AM. Therapeutic Potential of Toll-like Receptor 9 Activation. Nat Rev Drug Discov. 2006;5:471–84.

    Article  CAS  PubMed  Google Scholar 

  18. Monteith DK, Horner MJ, Gillett NA, Butler M, Geary R, Burckin T, et al. Evaluation of the renal effects of an antisense phosphorothioate oligodeoxynucleotide in monkeys. Toxicol Pathol. 1999;27:307–17.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt M, Anton K, Nordhaus C, Junghans C, Wittig B, Worm M. Cytokine and Ig-production by CG-containing sequences with phosphorodiester backbone and dumbbell-shape. Allergy. 2006;61:56–63.

    Article  CAS  PubMed  Google Scholar 

  20. Schüller VJ, Heidegger S, Sandholzer N, Nickels PC, Suhartha NA, Endres S, et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano. 2011;5:9696–702.

    Article  PubMed  Google Scholar 

  21. Li J, Pei H, Zhu B, Liang L, Wei M, He Y, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano. 2011;5:8783–9.

    Article  CAS  PubMed  Google Scholar 

  22. Koo JE, Shin SW, Um SH, Lee JY. X-shaped DNA potentiates therapeutic efficacy in colitis-associated colon cancer through dual activation of TLR9 and inflammasomes. Mol Cancer. 2015;14:104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, et al. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS Nano. 2012;6:5931–40.

    Article  CAS  PubMed  Google Scholar 

  24. Uno S, Nishikawa M, Mohri K, Umeki Y, Matsuzaki N, Takahashi Y, et al. Efficient delivery of immunostimulatory DNA to mouse and human immune cells through the construction of polypod-like structured DNA. Nanomedicine. 2014;10:765–74.

    Article  CAS  PubMed  Google Scholar 

  25. Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci U S A. 1996;93:12456–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohtsuki S, Matsuzaki N, Mohri K, Endo M, Emura T, Hidaka K, et al. Optimal Arrangement of Four Short DNA Strands for Delivery of Immunostimulatory Nucleic Acids to Immune Cells. Nucleic Acid Ther. 2015;25:245–53.

    Article  CAS  PubMed  Google Scholar 

  27. Rattanakiat S, Nishikawa M, Funabashi H, Luo D, Takakura Y. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials. 2009;30:5701–6.

    Article  CAS  PubMed  Google Scholar 

  28. Mohri K, Kusuki E, Ohtsuki S, Takahashi N, Endo M, Hidaka K, et al. Self-assembling DNA dendrimer for effective delivery of immunostimulatory CpG DNA to immune cells. Biomacromolecules. 2015;16:1095–101.

    Article  CAS  PubMed  Google Scholar 

  29. Nishikawa M, Ogawa K, Umeki Y, Mohri K, Kawasaki Y, Watanabe H, et al. Injectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen delivery. J Control Release. 2014;180:25–32.

    Article  CAS  PubMed  Google Scholar 

  30. Nishikawa M, Mizuno Y, Mohri K, Matsuoka N, Rattanakiat S, Takahashi Y, et al. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials. 2011;32:488–94.

    Article  CAS  PubMed  Google Scholar 

  31. Umeki Y, Mohri K, Kawasaki Y, Watanabe H, Takahashi R, Takahashi Y, et al. Induction of potent antitumor immunity by sustained release of cationic antigen from a DNA-based hydrogel with adjuvant activity. Adv Funct Mater. 2015;25:5758–67.

    Article  CAS  Google Scholar 

  32. Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002;14:26–33.

    Article  Google Scholar 

  33. Yamasaki Y, Sumimoto K, Nishikawa M, Yamashita F, Yamaoka K, Hashida M, et al. Pharmacokinetic analysis of in vivo disposition of succinylated proteins targeted to liver nonparenchymal cells via scavenger receptors: importance of molecular size and negative charge density for in vivo recognition by receptors. J Pharmacol Exp Ther. 2002;301:467–77.

    Article  CAS  PubMed  Google Scholar 

  34. Liedl T, Simmel FC. Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett. 2005;5:1894–8.

    Article  CAS  PubMed  Google Scholar 

  35. Marras SA, Kramer FR, Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 2002;30:e122.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xuan F, Hsing IM. Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J Am Chem Soc. 2014;136:9810–3.

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Lee SH, Mao C. A DNA nanomachine based on a duplex-triplex transition. Angew Chem Int Ed Engl. 2004;43:5335–8.

    Article  CAS  PubMed  Google Scholar 

  38. Li XM, Song J, Cheng T, Fu PY. A duplex-triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis. Anal Bioanal Chem. 2013;405:5993–9.

    Article  CAS  PubMed  Google Scholar 

  39. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, et al. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol. 2007;8:772–9.

    Article  CAS  PubMed  Google Scholar 

  40. Zelenay S, Elías F, Fló J. Immunostimulatory effects of plasmid DNA and synthetic oligodeoxynucleotides. Eur J Immunol. 2003;33:1382–92.

    Article  CAS  PubMed  Google Scholar 

  41. Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol. 2004;34:2541–50.

    Article  CAS  PubMed  Google Scholar 

  42. Sanada Y, Shiomi T, Okobira T, Tan M, Nishikawa M, Akiba I, et al. Polypod-Shaped DNAs: Small-Angle X-ray Scattering and Immunostimulatory Activity. Langmuir. 2016;32:3760–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohta Mohri.

Electronic Supplementary Material

Table S1

(PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohri, K., Nagata, K., Ohtsuki, S. et al. Elucidation of the Mechanism of Increased Activity of Immunostimulatory DNA by the Formation of Polypod-like Structure. Pharm Res 34, 2362–2370 (2017). https://doi.org/10.1007/s11095-017-2243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2243-y

KEY WORDS

Navigation