Skip to main content
Log in

Folate-Conjugated pH-Responsive Nanocarrier Designed for Active Tumor Targeting and Controlled Release of Gemcitabine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The prime end of this study was to design a novel pH-sensitive as well as a PEGylated dendritic nanocarrier for both controllable and traceable gemcitabine delivery to cancerous cells. To accomplish this goal, we took advantage of a hybrid of nanoparticles including: mesoporous silica, graphene oxide and magnetite.

Methods

The nanocarrier was prepared in a multi-step synthesis route. First, magnetite mesoporous silica was deposited on the graphene oxide matrix. Then, polyamidoamine dendrimers (up to generation 1.5) with pentaethylene hexamine end groups were grafted on the surface of the nanoparticles. In order to enhance the biostability, and as the next step, the nanocarrier was modified by polyethylene glycol. Finally, these particles were functionalized by folic acid as tumor targeting agents.

Results

According to the dynamic light scattering results, the hydrodynamic diameter of magnetic mesoporous silica graphene oxide hybrid nanoparticle was 152 ± 3 nm, while for the supramolecular hybrid nanoparticles it was about 324 ± 12 nm. Attained through the adsorption branch, the average pore diameter of these nanoparticles was 7.6 nm. Zeta potential test indicated −27.1 mV value for hybrid nanoparticles and +7.35 mV for supramolecular hybrid nanoparticles. Besides, cytotoxicity assay showed enhanced cytotoxicity of epidermoid carcinoma cell line A431 in the presence of folate conjugated carriers. The maximum release occurred at the pH 5.5, because the dendritic structure was in the open state rather than compact state.

Conclusions

The enhanced cytotoxicity of the epidermoid carcinoma cell line A431 in the presence of folate conjugated carriers, confirmed the improved cancerous cells uptake. Also, the positive surface potential would be a good property for the biological applications because the inherent negative-charged surface of cell membranes facilitates the uptake of positive particles by electrostatic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

APTS:

Aminopropyltriethoxysilane

BET:

Brunauer–Emmett–Teller

CTAB:

Cetyltrimethyl ammonium bromide

DCC:

Dicylohexylcarbodiimide

DLS:

Dynamic light scattering

DMSO:

Dimethylsulfoxide

EDA:

Ethylenediamine

FA:

Folic acid

FBS:

Fetal bovine serum

Fe3O4@GO@mSiO2 :

Magnetic mesoporous silica coated graphene oxide

FT-IR:

Fourier transform infrared

GO:

Graphene oxide

MTT:

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

PAMAM:

Polyamidoamine

PBS:

Phosphate buffer saline

PEG:

Polyethylene glycol

TEM:

Transmission electron microscope

TEOS:

Tetraethyl orthosilicate

TGA:

Thermogravimetric analysis

WAXD:

Wide angle X-ray diffraction

References

  1. Wang ZM, Wang W, Coombs N, Soheilnia N, Ozin GA. Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. ACS Nano. 2010;4:7437–50.

    Article  CAS  PubMed  Google Scholar 

  2. Tasciotti E, Liu XW, Bhavane R, Plant K, Leonard AD, Price BK, et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol. 2008;3:151–7.

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Shi W, Song WS, Wang L, Liu XG, Chen J, et al. Tumor cell targeted delivery by specific peptide-modified mesoporous silica nanoparticles. J Mater Chem. 2012;22:14608–16.

    Article  CAS  Google Scholar 

  4. Jiang H, Zeng X, Xi Z, Liu M, Li C, Li Z, et al. Improvement on controllable fabrication of streptavidin-modified three layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites with low fluorescence background. J Biomed Nanotechnol. 2013;9:674–84.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, et al. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc. 2013;135:4799–804.

    Article  CAS  PubMed  Google Scholar 

  6. Pourjavadi A, Tehrani ZM, Jokar S. Functionalized mesoporous silica-coated magnetic graphene oxide by polyglycerol-g-polycaprolactone with pH-responsive behavior: designed for targeted and controlled doxorubicin delivery. J Ind Eng Chem. 2015;28:45–53.

    Article  CAS  Google Scholar 

  7. Doshi M. Dendrimer and its application. Int J Pharm Sci Rev Res. 2011;7:104–11.

    CAS  Google Scholar 

  8. El-Sayed M, Rhodes CA, Ginski M, Ghandehari H. Transport mechanism(s) of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Int J Pharm. 2003;265:151–7.

    Article  CAS  PubMed  Google Scholar 

  9. Najlah M, D’Emanuele A. Crossing cellular barriers using dendrimer nanotechnologies. Curr Opin Pharmacol. 2006;6:522–7.

    Article  CAS  PubMed  Google Scholar 

  10. Duncan R, Malik N, Wiwattanapatapee R, Klopsch R, Lorenze K, Frey H, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000;65:133–48.

    Article  PubMed  Google Scholar 

  11. Harris JM, Struck EC, Case MC, Paley MS, Yalpani M, Alstine VJM, et al. Synthesis and characterization of poly(ethylene glycol) derivatives. J Polym Sci Polym Chem Ed. 1984;22:341–52.

    Article  CAS  Google Scholar 

  12. Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2009;4:022001.

    Article  PubMed  Google Scholar 

  13. Brando-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59.

    Article  Google Scholar 

  14. Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41:120–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2002;54:675–93.

    Article  CAS  PubMed  Google Scholar 

  16. Sudimack J, Lee R. Targeted drug delivery via the folate receptor. J Adv Drug Deliv Rev. 2000;41:147–62.

    Article  CAS  Google Scholar 

  17. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2:889–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gu J, Fan W, Shimojima A, Okubo T. Organic–inorganic mesoporous nanocarriers integrated with biogenic ligands. Small. 2007;3:1740–4.

    Article  CAS  PubMed  Google Scholar 

  19. Pasqua L, Testa F, Aiello R, Cundari S, Nagy JB. Preparation of bifunctional hybrid mesoporous silica potentially useful for drug targeting. Microporous Mesoporous Mater. 2007;103:166–73.

    Article  CAS  Google Scholar 

  20. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, et al. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano. 2009;3:197–206.

    Article  CAS  PubMed  Google Scholar 

  21. Fehlauer F, Muench M, Smid EJ, Slotman B, Richter E, Van der Valk P, et al. Combined modality therapy of gemcitabine and irradiation on human glioma spheroids derived from cell lines and biopsy tissue. Oncol Rep. 2006;15:97–105.

    CAS  PubMed  Google Scholar 

  22. www.wikipedia.com

  23. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339–9.

  24. Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21:3007–11.

    Article  CAS  Google Scholar 

  25. Wang G, Yang S, Wei Z, Dong X, Wang H, Qi M. Facile preparation of poly(ε-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites. Polym Bull. 2013;70:2359–71.

    Article  CAS  Google Scholar 

  26. Yin P, Sun N, Deng C, Li Y, Zhang X, Yang P. Facile preparation of magnetic graphene double-sided mesoporous composites for the selective enrichment and analysis of endogenous peptides. Proteomics. 2013;13:2243–50.

    Article  CAS  PubMed  Google Scholar 

  27. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class ofpolymers: starburst-dendritic macromolecules. Polym J. 1995;17:117–32.

    Article  Google Scholar 

  28. Barrera C, Herrera AP, Bezares N, Fachini E, Olayo-Valles R, Hinestroza JP, et al. Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. J Colloid Interface Sci. 2012;377:40–50.

    Article  CAS  PubMed  Google Scholar 

  29. Pourjavadi A, Hosseini SH, Alizadeh M, Bennett C. Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin. Colloids Surf B: Biointerfaces. 2014;116:49–54.

    Article  CAS  PubMed  Google Scholar 

  30. Tang H, Guo J, Sun Y, Chang B, Ren Q, Yang W. Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Int J Pharm. 2011;421:388–96.

    Article  CAS  PubMed  Google Scholar 

  31. Higuchi T. Mechanisms of sustained action mediation. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  32. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.

    Article  CAS  PubMed  Google Scholar 

  33. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163–74.

    Article  Google Scholar 

  34. Fu YS, Chen HQ, Sun XQ, Wang X. Combination of cobalt ferrite and graphene: high performance and recyclable visible-light photocatalysis. Appl Catal B Environ. 2012;111:280–7.

    Article  Google Scholar 

  35. Andersson J, Rosenholm J, Lindén M. Mesoporous silica: an alternative diffusion controlled drug delivery system. In: N. Ashammakhi, editor. Topics in Multifunctional Biomaterials and Devices. 2008.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are grateful to Miss. Mohadeseh Doroudian and Mr. Behzad Pourbadiei for the help in MTT assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Pourjavadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourjavadi, A., Tehrani, Z.M. & Moghanaki, A.A. Folate-Conjugated pH-Responsive Nanocarrier Designed for Active Tumor Targeting and Controlled Release of Gemcitabine. Pharm Res 33, 417–432 (2016). https://doi.org/10.1007/s11095-015-1799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1799-7

KEY WORDS

Navigation