Skip to main content
Log in

Design and Development of Bioceramic Based Functionalized PLGA Nanoparticles of Risedronate for Bone Targeting: In-vitro Characterization and Pharmacodynamic Evaluation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Bioceramic(Hydroxyapatite) based Poly(D,L-lactide-co-glycolide) (PLGA) and polyethylene glycol (PEG) nanoparticles of Risedronate was prepared by dialysis method for bone-targeting.

Methods

Risedronate, a targeting moiety that has a strong affinity for bone, was conjugated to PLGA via carbodiimide chemistry. Mono-methoxy PEG(mPEG)-PLGA block polymers were synthesized and used to impart surface hydrophilicity to nanoparticles to avoid its uptake by reticuloendothelial system (RES). The structure of prepared di block copolymers were characterized by FT-IR and NMR spectrometry. Risedronate was adsorbed on the surface of hydroxyapatite (RIS-HA) and it was conjugated with different ratios of mPEG-PLGA. The formation of surface-modified PLGA nanoparticle prepared with various ratios of risedronate as well as hydroxyapatite and mPEG was confirmed by 1H NMR and FT-IR spectrometry.

Results

Size and % entrapment of the prepared nanoparticle was found to be 79.3 ± 2.3 nm and 93 ± 3.1%. Transmission electron microscopy (TEM) revealed that mPEG-PLGA-RIS-HA nanoparticles possess smooth and uniform surface. Pharmacodynamic study was performed on Dexamethasone (DEX) induced osteoporotic model. The effect of various formulations (mPEG-PLGA-RIS, mPEG-PLGA-RIS-HA and RISOFOS tablet) on bone was studied by Volume bone density (VBD) and by histopathological evaluation. Interestingly mPEG-PLGA-RIS-HA, showed a significant enhancement in bone micro-architecture when compared with other formulations.

Conclusions

The results strongly implicated that mPEG-PLGA-RIS-HA has a therapeutic benefits over risedronate sodium monotherapy for the treatment of osteoporosis in a rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CaP:

Calcium phosphate

DCC:

Dicyclohexyl carbodiimide

DEX:

Dexamethasone

DLS:

Dynamic light scattering

DMSO:

Dimethyl sulfoxide

HA:

Hydroxyapatite

mPEG:

Methoxy polyethylene glycol

NHS:

N-hydroxyl succinimide

PLGA:

Poly(D,L-lactide-co-glycolide)

RIS:

Risedronate

VBD:

Volumetric bone density analysis

References

  1. Kristina A. Bull World Health Organ. 2003;81:657–63.

    Google Scholar 

  2. Cooper C, Melton LJ. Epidemiology of osteoporosis. Trends Endocrinol Metab. 1992;3:224–9.

    Article  CAS  PubMed  Google Scholar 

  3. Nordin BEC. International patterns of osteoporosis. Clin Orthop. 1966;45:17–30.

    CAS  PubMed  Google Scholar 

  4. Currey JD. Biomechanics of mineralized skeletons. In: Carter JG, editor. Skeletal biomineralization: patterns, processes and evolutionary trends, I. New York: Van Nostrand Reinhold; 1990.

    Google Scholar 

  5. Lin L, Chow KL, Leng Y. Study of hydroxyapatite osteo inductivity with an osteogenic 257 differentiation of mesenchymal stem cells. J Biomed Mater Res A. 2009;89:326–35.

    Article  PubMed  Google Scholar 

  6. Negi P, Negi LM, Vohora D, Ahmad FJ, Talegaonkar S. Enhancing safety and efficacy of bisphosphonate therapy by association with hydroxyapatite as adjuvant drug carriers. OA Med Hypothesis. 2014;2:6.

    Google Scholar 

  7. Bonnick S, Saag KG, Kiel DE. Comparison of weekly treatment of postmenopausal osteoporosis with alendronate vs. risedronate over two years. J Clin Endocrinol Metab. 2006;91:2631–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kathryn L, Kavanagh KG, James ED, Xiaoqiu W, Stefan K, Ebetin FH, et al. The molecular mechanism of nitrogen-containing bisphosphonates as anti-osteoporosis drugs. Proc Natl Acad Sci U S A. 2006;103:7829–34.

    Article  Google Scholar 

  9. Vaculikova E, Placha D, Pisarcik M, Peikertova P, Dedkova K, Devinsky F, et al. Preparation of Risedronate nanoparticles by solvent evaporation technique. Molecules. 2014;19:17848–61.

    Article  CAS  PubMed  Google Scholar 

  10. Nasr M, Awad GA, Mansour S, Taha I, Al Shamy A, Mortada ND. Different modalities of NaCl osmogen in biodegradable microspheres for bone deposition of risedronate sodium by alveolar targeting. Eur J Pharm Biopharm. 2011;79:601–11.

    Article  CAS  PubMed  Google Scholar 

  11. Cenni E, Granchi D, Avnet S, Fotia C, Salerno M, Micieli D, et al. Biocompatibility of poly(D, L-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials. 2008;29:1400–11.

    Article  CAS  PubMed  Google Scholar 

  12. Bigi A, Boanini E, Capuccini C, Fini M, Mihailescu IN, Ristoscu C, et al. Biofunctional alendronate–Hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials. 2009;30:6168–77.

    Article  CAS  PubMed  Google Scholar 

  13. Hruby M, Konak C, Ulbrich K. Polymeric micellar pH sensitive drug delivery system for doxorubicin. J Control Release. 2005;103:137–48.

    Article  CAS  PubMed  Google Scholar 

  14. Shi X, Wang Y, Varshney RR, Ren L, Zhang F, Wang DA. In-vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphonate additives from microspherical mesoporous silica composite. Biomaterials. 2009;30:3996–4005.

    Article  CAS  PubMed  Google Scholar 

  15. Niemi R, Vepsalainen J, Taipale H, Jairvinen T. Bisphosphonate prodrugs: synthesis and in vitro evaluation of novel acyloxyalkyl esters of clodronic acid. J Med Chem. 1999;2:5053–8.

    Article  Google Scholar 

  16. Ezra A, Hoffman A, Breuer E, Alferiev IS, Monkkonen J, El Hanany-Rozen N, et al. A peptide prodrug approach for improving bisphosphonate oral absorption. J Med Chem. 2000;43:3641–52.

    Article  CAS  PubMed  Google Scholar 

  17. Ogawa K, Mukai T, Inoue Y, Ono M, Saji H. Development of a novel 99mTc-chelate conjugated bisphosphonate with high affinity for bone as a bone scintigraphic agent. J Nucl Med. 2006;47:2042–7.

    CAS  PubMed  Google Scholar 

  18. Choi SW, Kim JH. Design of surface-modified poly(D, L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release. 2007;122:24–30.

    Article  CAS  PubMed  Google Scholar 

  19. Sahana H, Khajuria DK, Razdan R, Mahapatra DR, Bhat MR, Suresh S, et al. Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle based formulation in a rat model of osteoporosis. J Biomed Nanotechnol. 2013;9:193–201.

    Article  CAS  PubMed  Google Scholar 

  20. Fu YC, Fu TF, Wang HJ, Lin CW, Lee GH, Wu SC, et al. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater. 2014;10:4583–96.

    Article  CAS  PubMed  Google Scholar 

  21. Wu CC, Wang CC, Lu DH, Hsu LH, Yang KC, Lin FH. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats. Biomed Mater. 2012;7:035009.

    Article  PubMed  Google Scholar 

  22. Kyllonen L, Este MD, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater. 2015;11:412–34.

    Article  CAS  PubMed  Google Scholar 

  23. Bozzo Rde O, Rocha RG, Haiter Neto F, Paganini GA, Cavalcanti MG. Linear density analysis of bone repair in rats using digital direct radiograph. J Appl Oral Sci. 2004;12:317–21.

    PubMed  Google Scholar 

  24. Bancroft JD, Cook HC. Manual of histological techniques and their diagnostic application. Edinburgh: Churchill Livingstone; 1994.

    Google Scholar 

  25. Saikia KC, Bhattacharya TD, Bhuyan SK, Talukdar DJ, Saikia SP, Jitesh P. Calcium phosphate ceramics as bone graft substitutes in filling bone tumor defects. Indian J Orthop. 2008;42:169–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Murakami H, Takahashi N, Sasaki T, Udagawa N, Tanaka S, Nakamura I, et al. A possible mechanism of the specific action of bisphosphonates on osteoclasts: tiludronate preferentially affects polarized osteoclasts having ruffled borders. Bone. 1995;17:137–44.

    Article  CAS  PubMed  Google Scholar 

  27. Khanna S, Pillai KK, Vohora D. Bisphosphonates in phenytoin-induced bone disorder. Bone. 2011;48:597–606.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are thankful for the financial assistance from ICMR, New Delhi. We also acknowledge the Evonik Research for providing the gift sample of PLGA (50:50) polymer and lipoid for providing the gift sample of methoxy PEG. The authors are also thankful to Mr. Jitender singh, Department of Pharmaceutical chemistry Jamia Hamdard and Dr. Ambrish Tiwari, Incharge of animal house, Faculty of Science, Jamia Hamdard, New Delhi for their inputs regarding animal studies.

Conflicts of Interest

The authors state no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushama Talegaonkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, P., Manglani, K., Gupta, S. et al. Design and Development of Bioceramic Based Functionalized PLGA Nanoparticles of Risedronate for Bone Targeting: In-vitro Characterization and Pharmacodynamic Evaluation. Pharm Res 32, 3149–3158 (2015). https://doi.org/10.1007/s11095-015-1692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1692-4

KEY WORDS

Navigation