Skip to main content
Log in

Bridging Laboratory and Large Scale Production: Preparation and In Vitro-Evaluation of Photosensitizer-Loaded Nanocarrier Devices for Targeted Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Industrial production of nanosized drug delivery devices is still an obstacle to the commercialization of nanomedicines. This study encompasses the development of nanoparticles for peroral application in photodynamic therapy, optimization according to the selected product specifications, and the translation into a continuous flow process.

Methods

Polymeric nanoparticles were prepared by nanoprecipitation of Eudragit® RS 100 in presence and in absence of glycofurol. The photosensitizer temoporfin has been encapsulated into these carrier devices. Process parameters were optimized by means of a Design of Experiments approach and nanoparticles with optimal characteristics were manufactured by using microreactor technology. The efficacy was determined by means of cell culture models in A-253 cells.

Results

Physicochemical properties of nanoparticles achieved by nanoprecipitation from ethanolic solutions were superior to those obtained from a method based upon glycofurol. Nanoencapsulation of temoporfin into the matrix significantly reduced toxicity of this compound, while the efficacy was maintained. The release profiles assured a sustained release at the site of action. Finally, the transfer to continuous flow technology was achieved.

Conclusion

By adjusting all process parameters, a potent formulation for application in the GI tract was obtained. The essential steps of process development and scale-up were part of this formulation development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

AUC:

Analytical ultracentrifugation

DLS:

Dynamic light scattering

DMEM:

Dulbecco’s Modified Eagle Medium

DoE:

Design of Experiments

FCS:

Fetal calf serum

GI:

Gastrointestinal

GMP:

Good manufacturing practice

mTHPC:

meso-tetrakis(3-hydroxyphenyl)chlorin

MWCO:

Molecular weight cut-off

PAT:

Process analytical technology

PDI:

Polydispersity index

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PMS:

N-methyl dibenzopyrazine methyl sulphate

S.D.:

Standard deviation

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscopy

SNS ratio:

Solvent-to-non solvent ratio

TEM:

Transmission electron microscopy

XTT:

Sodium 3’-[(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid

References

  1. Barenholz Y. Doxil® - the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.

    Article  CAS  PubMed  Google Scholar 

  2. Lautenschlager C, Schmidt C, Lehr CM, Fischer D, Stallmach A. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur J Pharm Biopharm. 2013;85(3 Pt A):578–86.

    Article  PubMed  Google Scholar 

  3. Lamprecht A, Schafer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18(6):788–93.

    Article  CAS  PubMed  Google Scholar 

  4. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  5. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):1–4.

  6. Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257(1–2):169–80.

    Article  CAS  PubMed  Google Scholar 

  7. Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res. 1998;150(5 Suppl):146–56.

    Article  Google Scholar 

  8. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano letters. 2008;8(9):2906–12.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao C-X, He L, Qiao SZ, Middelberg AP. Nanoparticle synthesis in microreactors. Chemical Engineering Science. 2011;66(7):1463–79.

    Article  CAS  Google Scholar 

  10. Santos RJ, Sultan MA. State of the art of mini/μ Jet reactors. Chemical Engineering & Technology. 2013;36(6):937–49.

    Article  CAS  Google Scholar 

  11. Petschacher C, Eitzlmayr A, Besenhard M, Wagner J, Barthelmes J, Bernkop-Schnürch A, et al. Thinking continuously: a microreactor for the production and scale-up of biodegradable, self-assembled nanoparticles. Polymer Chemistry. 2013;4(7):2342–52.

    Article  CAS  Google Scholar 

  12. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol. 1992;55(1):145–57.

    Article  CAS  PubMed  Google Scholar 

  13. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26(11):612–21.

    Article  CAS  PubMed  Google Scholar 

  14. Dougherty TJ. Photodynamic therapy (PDT) of malignant tumors. Crit Rev Oncol Hematol. 1984;2(2):83–116.

    Article  CAS  PubMed  Google Scholar 

  15. Bodmeier R, Chen H, Tyle P, Jarosz P. Spontaneous formation of drug-containing acrylic nanoparticles. J Microencapsul. 1991;8(2):161–70.

    Article  CAS  PubMed  Google Scholar 

  16. Viehof A, Javot L, Beduneau A, Pellequer Y, Lamprecht A. Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. Int J Pharm. 2013;443(1–2):169–74.

    Article  CAS  PubMed  Google Scholar 

  17. Wacker M, Chen K, Preuss A, Possemeyer K, Roeder B, Langer K. Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties Int J Pharm. 2010;393(1–2):253–62.

    CAS  Google Scholar 

  18. Vogel V, Langer K, Balthasar S, Schuck P, Mächtle W, Haase W, et al. Characterization of serum albumin nanoparticles by sedimentation velocity analysis and electron microscopy. Analytical Ultracentrifugation VI: Springer; 2002. p. 31–36.

  19. Bootz A, Vogel V, Schubert D, Kreuter J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2004;57(2):369–75.

    Article  CAS  PubMed  Google Scholar 

  20. Schuck P, Rossmanith P. Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers. 2000;54(5):328–41.

    Article  CAS  PubMed  Google Scholar 

  21. Porsch B, Hillang I, Karlsson A, Sundelof LO. Ion-exclusion controlled size-exclusion chromatography of methacrylic acid-methyl methacrylate copolymers. J Chromatogr A. 2000;872(1–2):91–9.

    Article  CAS  PubMed  Google Scholar 

  22. Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies. Colloids Surf B Biointerfaces. 2009;70(2):198–206.

    Article  CAS  PubMed  Google Scholar 

  23. Wacker M, Zensi A, Kufleitner J, Ruff A, Schutz J, Stockburger T, et al. A toolbox for the upscaling of ethanolic human serum albumin (HSA) desolvation. Int J Pharm. 2011;414(1–2):225–32.

    Article  CAS  PubMed  Google Scholar 

  24. Wacker M. Nanocarriers for intravenous injection-the long hard road to the market. Int J Pharm. 2013;457(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  25. Wacker MG. Nanotherapeutics-product development along the “nanomaterial” discussion. J Pharm Sci. 2014;103(3):777–84.

    Article  CAS  PubMed  Google Scholar 

  26. Moulari B, Pertuit D, Pellequer Y, Lamprecht A. The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials. 2008;29(34):4554–60.

    Article  CAS  PubMed  Google Scholar 

  27. Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  28. Tscharnuter W. Photon correlation spectroscopy in particle sizing. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chinchester: Wiley; 2000. p. 5469–85.

    Google Scholar 

  29. Ali ME, Lamprecht A. Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation. Int J Pharm. 2013;456(1):135–42.

    Article  CAS  PubMed  Google Scholar 

  30. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small. 2011;7(14):1919–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.33.

    Article  CAS  PubMed  Google Scholar 

  33. Günther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF. Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir. 2005;21(4):1547–55.

    Article  PubMed  Google Scholar 

  34. Jensen KF. Microreaction engineering—is small better? Chemical Engineering Science. 2001;56(2):293–303.

    Article  CAS  Google Scholar 

  35. Li W, Greener J, Voicu D, Kumacheva E. Multiple modular microfluidic (M 3) reactors for the synthesis of polymer particles. Lab on a Chip. 2009;9(18):2715–21.

    Article  CAS  PubMed  Google Scholar 

  36. Türeli AE, Penth B, Langguth P, Baumstümmler B. Vorrichtung und Verfahren zur Herstellung pharmazeutisch hochfeiner Partikel sowie zur Beschichtung solcher Partikel in Mikroreaktoren. German Patent Application DE102009008478A1; 2011.

  37. Wu H, White M, Khan MA. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. Int J Pharm. 2011;405(1–2):63–78.

    Article  CAS  PubMed  Google Scholar 

  38. Yu LX, Lionberger RA, Raw AS, D’Costa R, Wu H, Hussain AS. Applications of process analytical technology to crystallization processes. Adv Drug Deliv Rev. 2004;56(3):349–69.

    Article  CAS  PubMed  Google Scholar 

  39. Wu H, Khan MA. Quality-by-design: an integrated process analytical technology approach to determine the nucleation and growth mechanisms during a dynamic pharmaceutical coprecipitation process. J Pharm Sci. 2011;100(5):1969–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors want to acknowledge Prof. Dr. Jennifer B. Dressman, Prof. Dr. Dieter Steinhilber, and Dr. Astrid Kahnt for their support and Evonik Industries AG for reagent supply.

This work has been supported by the Else Kröner-Fresenius Foundation (EKFS), Research Training Group Translational Research Innovation – Pharma (TRIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias G. Wacker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyer, S., Xie, L., Gräfe, S. et al. Bridging Laboratory and Large Scale Production: Preparation and In Vitro-Evaluation of Photosensitizer-Loaded Nanocarrier Devices for Targeted Drug Delivery. Pharm Res 32, 1714–1726 (2015). https://doi.org/10.1007/s11095-014-1569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1569-y

Keywords

Navigation