Skip to main content

Advertisement

Log in

Strategies to Maximize Liposomal Drug Loading for a Poorly Water-soluble Anticancer Drug

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a liposomal system with high drug loading (DL) for intravenous (i.v.) delivery of a poorly water-soluble basic drug, asulacrine (ASL).

Methods

A thin-film hydration and extrusion method was used to fabricate the PEGylated liposomal membranes followed by a freeze and thaw process. A novel active drug loading method was developed using ammonium sulphate gradient as an influx driving force of ASL solubilized with sulfobutyl ether-β-cyclodextrin (SBE-β-CD). DL was maximized by optimizing liposomal preparation and loading conditions. Pharmacokinetics was evaluated following i.v. infusion in rabbits.

Results

Freeze-thaw resulted in unilamellar liposome formation (180 nm) free of micelles. Higher DL was obtained when dialysis was used to remove the untrapped ammonium sulphate compared to ultracentrifuge. The pH and SBE-β-CD level in the loading solution played key roles in enhancing DL. High DL ASL-liposomes (8.9%w/w, drug-to-lipid mole ratio 26%) were obtained with some drug “bundles” in the liposomal cores and were stable in a 5% glucose solution for >80 days with minimal leakage (<2%). Surprisingly, following administration of ASL-liposomes prepared with or without SBE-β-CD, the half-lives were similar to the drug solution despite an increased area under the curve, indicating drug leakage from the carriers.

Conclusions

High liposomal DL was achieved with multiple strategies for a poorly-water soluble weak base. However, the liposomal permeability needed to be tailored to improve drug retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASL:

Asulacrine

ASL-L:

Asulacrine liposomes

Cryo-TEM:

Cryo-Transmission electron microscopy

DL:

Drug loading

DLS:

Dynamic light scattering

EE:

Entrapment efficiency

EPR:

Enhanced permeability and retention

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PIP:

Post-injection precipitation

RES:

Reticuloendothelial system

SBE-β-CD:

Sulfobutyl ether-β-cyclodextrin

TFH:

Thin-film hydration

References

  1. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    Article  CAS  PubMed  Google Scholar 

  2. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release. 2000;65(1):271–84.

    Article  CAS  PubMed  Google Scholar 

  3. Taurin S, Nehoff H, Diong J, Larsen L, Rosengren RJ, Greish K. Curcumin-derivative nanomicelles for the treatment of triple negative breast cancer. J Drug Target. 2013;21(7):675–83.

    Article  CAS  PubMed  Google Scholar 

  4. Xu H, Paxton J, Lim J, Li Y, Zhang W, Duxfield L, et al. Development of high-content gemcitabine pegylated liposomes and their cytotoxicity on drug-resistant pancreatic tumour cells. Pharma Res. 2014;1–10.

  5. Cui Y, Wu Z, Liu X, Ni R, Zhu X, Ma L, et al. Preparation, safety, pharmacokinetics, and pharmacodynamics of liposomes containing Brucea javanica oil. AAPS PharmSciTech. 2010;11(2):878–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv. 2011;8(5):565–80.

    Article  CAS  PubMed  Google Scholar 

  7. Bolotin EM, Cohen R, Bar LK, Emanuel N, Ninio S, Barenholz Y, et al. Ammonium Sulfate Gradients for Efficient and Stable Remote Loading of Amphipathic Weak Bases into Liposomes and Ligando liposomes. J Liposome Res. 1994;4(1):455–79.

    Article  Google Scholar 

  8. Clerc S, Barenholz Y. Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim Biophys Acta. 1995;1240(2):257–65.

    Article  PubMed  Google Scholar 

  9. Gubernator J, Chwastek G, Korycińska M, Stasiuk M, Grynkiewicz G, Lewrick F, et al. The encapsulation of idarubicin within liposomes using the novel EDTA ion gradient method ensures improved drug retention in vitro and in vivo. J Control Release. 2010;146(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  10. Li C, Cui J, Wang C, Li Y, Zhang L, Xiu X, et al. Novel sulfobutyl ether cyclodextrin gradient leads to highly active liposomal irinotecan formulation. J Pharm Pharmacol. 2011;63(6):765–73.

    Article  CAS  PubMed  Google Scholar 

  11. Taggar AS, Alnajim J, Anantha M, Thomas A, Webb M, Ramsay E, et al. Copper–topotecan complexation mediates drug accumulation into liposomes. J Control Release. 2006;114(1):78–88.

    Article  CAS  PubMed  Google Scholar 

  12. Zucker D, Marcus D, Barenholz Y, Goldblum A. Liposome drugs’ loading efficiency: A working model based on loading conditions and drug's physicochemical properties. J Control Release. 2009;139(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  13. Boman NL, Mayer LD, Cullis PR. Optimization of the retention properties of vincristine in liposomal systems. Biochim Biophys Acta. 1993;1152(2):253–8.

    Article  CAS  PubMed  Google Scholar 

  14. Modi S, Xiang T-X, Anderson BD. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. J Control Release. 2012;162(2):330–9.

    Article  CAS  PubMed  Google Scholar 

  15. Baguley BC, Denny WA, Atwell GJ, Finlay GJ, Rewcastle GW, Twigden SJ, et al. Synthesis, antitumor activity, and DNA binding properties of a new derivative of amsacrine, N-5-dimethyl-9-[(2-methoxy-4-methylsulfonylamino) phenylamino]-4-acridinecarboxamide. Cancer Res. 1984;44(8):3245–51.

    CAS  PubMed  Google Scholar 

  16. Schneider E, Darkin SJ, Lawson PA, Ching L-M, Ralph RK, Baguley BC. Cell line selectivity and DNA breakage properties of the antitumour agent N-[2-(Dimethylamino) ethyl] acridine-4-carboxamide: role of DNA topoisomerase II. Eur J Cancer Clin Oncol. 1988;24(11):1783–90.

    Article  CAS  PubMed  Google Scholar 

  17. Fyfe D, Price C, Langley R, Pagonis C, Houghton J, Osborne L, et al. A phase I trial of amsalog (CI-921) administered by intravenous infusion using a 5-day schedule. Cancer Chemother Pharmacol. 2001;47(4):333–7.

    Article  CAS  PubMed  Google Scholar 

  18. Sklarin NT, Wiernik PH, Grove WR, Benson L, Mittelman A, Maroun JA, et al. A phase II trial of CI-921 in advanced malignancies. Inves New Drugs. 1992;10(4):309–12.

    Article  CAS  Google Scholar 

  19. See E, Zhang W, Liu J, Svirskis D, Baguley BC, Shaw JP, et al. Physicochemical characterization of asulacrine towards the development of an anticancer liposomal formulation via active drug loading: Stability, solubility, lipophilicity and ionization. Int J Pharm. 2014;473(1–2):528–35.

    Article  CAS  PubMed  Google Scholar 

  20. Yalkowsky SH, Valvani SC, Johnson BW. In vitro method for detecting precipitation of parenteral formulations after injection. J Pharma Sci. 1983;72(9):1014–7.

    Article  CAS  Google Scholar 

  21. Wu Z, Hassan D, Shaw JP. In-vitro prediction of bioavailability following extravascular injection of poorly soluble drugs: an insight into clinical failure and the role of delivery systems. J Pharm Pharmacol. 2013;65(10):1429–39.

    Article  CAS  PubMed  Google Scholar 

  22. Powis G, Kovach JS. Disposition of bisantrene in humans and rabbits: evidence for intravascular deposition of drug as a cause of phlebitis. Cancer Res. 1983;43(2):925–9.

    CAS  PubMed  Google Scholar 

  23. Hu K, Zhu L, Liang H, Hu F, Feng J. Improved antitumor efficacy and reduced toxicity of liposomes containing bufadienolides. Arch Pharm Res. 2011;34(9):1487–94.

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Sun W, Zhang B, Tian B, Tang X, Qi N, et al. Clarithromycin-loaded liposomes offering high drug loading and less irritation. Int J Pharm. 2013;443(1):318–27.

    Article  CAS  PubMed  Google Scholar 

  25. Sriwongsitanont S, Ueno M. Effect of Freeze-Thawing Process on the Size and Lamellarity of PEG-Lipid Liposomes. Open Colloid Sci J. 2011;4:1–6.

    Article  CAS  Google Scholar 

  26. Johnsson M, Edwards K. Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly (ethylene glycol)-phospholipids. Biophys J. 2003;85(6):3839–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Taratula O, Dani RK, Schumann C, Xu H, Wang A, Song H, et al. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int J Pharm. 2013;458(1):169–80.

    Article  CAS  PubMed  Google Scholar 

  28. Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta. 2006;1758(10):1633–40.

    Article  CAS  PubMed  Google Scholar 

  29. Harrigan P, Wong K, Redelmeier T, Wheeler J, Cullis P. Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. Biochim Biophys Acta. 1993;1149(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  30. Lee C-M, Choi Y, Huh EJ, Lee KY, Song H-C, Sun MJ, et al. Polyethylene Glycol (PEG) Modified 99mTc-HMPAOLiposome for Improving Blood Circulation and Biodistribution: The Effect of the Extent of PEGylation. Cancer Biother Radiopharm. 2005;20(6):620–8.

    Article  CAS  PubMed  Google Scholar 

  31. Vail DM, Amantea MA, Colbern GT, Martin FJ, Hilger RA. Working PK, editors Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin Oncol. 2004;31:16–35.

    Article  CAS  PubMed  Google Scholar 

  32. Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv. 2008;5(1):25–44.

    Article  CAS  PubMed  Google Scholar 

  33. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    CAS  PubMed  Google Scholar 

  34. Piel G, Piette M, Barillaro V, Castagne D, Evrard B, Delattre L. Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes. Int J Pharm. 2007;338(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  35. Puskás I, Csempesz F. Influence of cyclodextrins on the physical stability of DPPC-liposomes. Colloids Surf B: Biointerfaces. 2007;58(2):218–24.

    Article  PubMed  Google Scholar 

  36. Lindner LH, Hossann M. Factors affecting drug release from liposomes. Expert Opin Drug Discov Devel. 2010;13(1):111–23.

    CAS  Google Scholar 

  37. Zhigaltsev IV, Maurer N, Akhong Q-F, Leone R, Leng E, Wang J, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release. 2005;104(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  38. Maurer-Spurej E, Wong KF, Maurer N, Fenske DB, Cullis PR. Factors influencing uptake and retention of amino-containing drugs in large unilamellar vesicles exhibiting transmembrane pH gradients. Biochim Biophys Acta. 1999;1416(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  39. Lasic D, Čeh B, Stuart M, Guo L, Frederik P, Barenholz Y. Transmembrane gradient driven phase transitions within vesicles: Lessons for drug delivery. Biochim Biophys Acta. 1995;1239(2):145–56.

    Article  PubMed  Google Scholar 

  40. Mady MM, Darwish MM. Effect of chitosan coating on the characteristics of DPPC liposomes. J Advanc Resb. 2010;1(3):187–91.

    Article  Google Scholar 

Download references

Acknowledgemnts and Disclosures

This study is a New Zealand-China Research Alliance Project funded by the New Zealand Ministry of Science and Innovation (MSI) (UOAX1102) and International Science and Technology Cooperation Program of China (2011DFG33380). The consumables were supported by a Faculty Research Development Fund from the University of Auckland to Dr Zimei Wu.

The authors declare that they have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Liu or Zimei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, G., Falconer, J.R. et al. Strategies to Maximize Liposomal Drug Loading for a Poorly Water-soluble Anticancer Drug. Pharm Res 32, 1451–1461 (2015). https://doi.org/10.1007/s11095-014-1551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1551-8

Key Words

Navigation