Skip to main content
Log in

Toward the Establishment of Standardized In Vitro Tests for Lipid-Based Formulations. 5. Lipolysis of Representative Formulations by Gastric Lipase

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Lipid-based formulations (LBF) are substrates for digestive lipases and digestion can significantly alter their properties and potential to support drug absorption. LBFs have been widely examined for their behaviour in the presence of pancreatic enzymes. Here, the impact of gastric lipase on the digestion of representative formulations from the Lipid Formulation Classification System has been investigated.

Methods

The pHstat technique was used to measure the lipolysis by recombinant dog gastric lipase (rDGL) of eight LBFs containing either medium (MC) or long (LC) chain triglycerides and a range of surfactants, at various pH values [1.5 to 7] representative of gastric and small intestine contents under both fasting and fed conditions.

Results

All LBFs were hydrolyzed by rDGL. The highest specific activities were measured at pH 4 with the type II and IIIA MC formulations that contained Tween®85 or Cremophor EL respectively. The maximum activity on LC formulations was recorded at pH 5 for the type IIIA-LC formulation. Direct measurement of LBF lipolysis using the pHstat, however, was limited by poor LC fatty acid ionization at low pH.

Conclusions

Since gastric lipase initiates lipid digestion in the stomach, remains active in the intestine and acts on all representative LBFs, its implementation in future standardized in vitro assays may be beneficial. At this stage, however, routine use remains technically challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17(9–10):486–95.

    Article  CAS  PubMed  Google Scholar 

  2. Di L, Kerns EH, Carter GT. Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009;15(9)):2184–94.

    Article  CAS  PubMed  Google Scholar 

  3. Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol. 2002;42(6):620–43.

    Article  CAS  PubMed  Google Scholar 

  4. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

    Article  PubMed  Google Scholar 

  5. Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–91.

    Article  CAS  PubMed  Google Scholar 

  6. Porter CJ, Wasan KM, Constantinides P. Lipid-based systems for the enhanced delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 2008;60(6):615–6.

    Article  CAS  PubMed  Google Scholar 

  7. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 1995;12(11):1561–72.

    Article  CAS  PubMed  Google Scholar 

  8. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  CAS  PubMed  Google Scholar 

  9. Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59(7):667–76.

    Article  CAS  PubMed  Google Scholar 

  10. Constantinides PP, Wasan KM. Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/in vivo case studies. J Pharm Sci. 2007;96(2):235–48.

    Article  CAS  PubMed  Google Scholar 

  11. Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther. 1998;284(1):362–9.

    CAS  PubMed  Google Scholar 

  12. Goole J, Lindley DJ, Roth W, Carl SM, Amighi K, Kauffmann JM, et al. The effects of excipients on transporter mediated absorption. Int J Pharm. 2010;393(1–2):17–31.

    Article  CAS  PubMed  Google Scholar 

  13. Patel JP, Brocks DR. The effect of oral lipids and circulating lipoproteins on the metabolism of drugs. Expert Opin Drug Metab Toxicol. 2009;5(11):1385–98.

    Article  CAS  PubMed  Google Scholar 

  14. Trevaskis NL, Porter CJ, Charman WN. An examination of the interplay between enterocyte-based metabolism and lymphatic drug transport in the rat. Drug Metab Dispos. 2006;34(5):729–33.

    Article  CAS  PubMed  Google Scholar 

  15. Bakala N’Goma JC, Amara S, Dridi K, Jannin V, Carriere F. Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther Deliv. 2012;3(1):105–24.

    Article  PubMed  Google Scholar 

  16. Williams HD, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, Jannin V, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80.

    Article  CAS  PubMed  Google Scholar 

  17. Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res. 2013;30(12):3059–76.

    Article  CAS  PubMed  Google Scholar 

  18. Williams HD, Anby MU, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV formulations during in vitro digestion. Mol Pharm. 2012;2012(11):3286–300.

    Article  Google Scholar 

  19. Carriere F, Barrowman JA, Verger R, Laugier R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 1993;105(3):876–88.

    CAS  PubMed  Google Scholar 

  20. Lengsfeld H, Beaumier-Gallon G, Chahinian H, De Caro A, Verger R, Laugier R, et al. Physiology of gastrointestinal lipolysis and therapeutical use of lipases and digestive lipase inhibitors. In: Müller G and Petry S, editors. Lipases and phospholipases in drug development. Weinheim: Wiley-VCH; 2004. p. 195–229.

  21. Fernandez S, Jannin V, Rodier JD, Ritter N, Mahler B, Carriere F. Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol, medium chain glycerides and PEG esters. Biochim Biophys Acta. 2007;1771(5):633–40.

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez S, Rodier JD, Ritter N, Mahler B, Demarne F, Carriere F, et al. Lipolysis of the semi-solid self-emulsifying excipient Gelucire 44/14 by digestive lipases. Biochim Biophys Acta. 2008;178(8):367–75.

    Article  Google Scholar 

  23. Fernandez S, Chevrier S, Ritter N, Mahler B, Demarne F, Carriere F, et al. In vitro gastrointestinal lipolysis of four formulations of piroxicam and cinnarizine with the self emulsifying excipients Labrasol and Gelucire 44/14. Pharm Res. 2009;26(8):1901–10.

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez S, Jannin V, Chevrier S, Chavant Y, Demarne F, Carriere F. In vitro digestion of the self-emulsifying lipid excipient Labrasol((R)) by gastrointestinal lipases and influence of its colloidal structure on lipolysis rate. Pharm Res. 2013;30(12):3077–87.

    Article  CAS  PubMed  Google Scholar 

  25. Carrière F, Moreau H, Raphel V, Laugier R, Bénicourt C, Junien J-L, et al. Purification and biochemical characterization of dog gastric lipase. Eur J Biochem. 1991;202(1):7–83.

    Article  Google Scholar 

  26. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 2000;11 Suppl 2:S93–8.

    Article  CAS  PubMed  Google Scholar 

  27. Gargouri Y, Chahinian H, Moreau H, Ransac S, Verger R. Inactivation of pancreatic and gastric lipases by THL and C12:0-TNB: a kinetic study with emulsified tributyrin. Biochim Biophys Acta. 1991;1085(3):322–8.

    Article  CAS  PubMed  Google Scholar 

  28. Carrière F, Grandval P, Renou C, Palomba A, Prieri F, Giallo J, et al. Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clin Gastroenterol Hepatol. 2005;3(1):28–38.

    Article  PubMed  Google Scholar 

  29. Gargouri Y, Pieroni G, Riviere C, Lowe PA, Sauniere JF, Sarda L, et al. Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim Biophys Acta. 1986;879(3):419–23.

    Article  CAS  PubMed  Google Scholar 

  30. Gargouri Y, Pieroni G, Riviere C, Sauniere JF, Lowe PA, Sarda L, et al. Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. Gastroenterology. 1986;91(4):919–25.

    CAS  PubMed  Google Scholar 

  31. Carriere F, Rogalska E, Cudrey C, Ferrato F, Laugier R, Verger R. In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases. Bioorg Med Chem. 1997;5(2):429–35.

    Article  CAS  PubMed  Google Scholar 

  32. Vaganay S, Joliff G, Bertaux O, Toselli E, Devignes MD, Benicourt C. The complete cDNA sequence encoding dog gastric lipase. DNA Seq. 1998;8(4):257–62.

    CAS  PubMed  Google Scholar 

  33. Roussel A, Canaan S, Egloff MP, Riviere M, Dupuis L, Verger R, et al. Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. J Biol Chem. 1999;274(24):16995–7002.

    Article  CAS  PubMed  Google Scholar 

  34. Roussel A, Miled N, Berti-Dupuis L, Riviere M, Spinelli S, Berna P, et al. Crystal structure of the open form of dog gastric lipase in complex with a phosphonate inhibitor. J Biol Chem. 2002;277(3):2266–74.

    Article  CAS  PubMed  Google Scholar 

  35. Carriere F, Laugier R, Barrowman JA, Douchet I, Priymenko N, Verger R. Gastric and pancreatic lipase levels during a test meal in dogs. Scand J Gastroenterol. 1993;28(5):443–54.

    Article  CAS  PubMed  Google Scholar 

  36. Carriere F, Renou C, Lopez V, De Caro J, Ferrato F, Lengsfeld H, et al. The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology. 2000;119(4):949–60.

    Article  CAS  PubMed  Google Scholar 

  37. Carriere F, Renou C, Ransac S, Lopez V, De Caro J, Ferrato F, et al. Inhibition of gastrointestinal lipolysis by Orlistat during digestion of test meals in healthy volunteers. Am J Physiol Gastrointest Liver Physiol. 2001;281(1):G16–28.

    CAS  PubMed  Google Scholar 

  38. Capolino P, Guérin C, Paume J, Giallo J, Ballester JM, Cavalier JF, et al. In vitro gastrointestinal lipolysis: replacement of human digestive lipases by a combination of rabbit gastric and porcine pancreatic extracts. Food Dig. 2011;2:43–51.

    Article  CAS  Google Scholar 

  39. Vors C, Capolino P, Guerin C, Meugnier E, Pesenti S, Chauvin MA, et al. Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food Funct. 2012;3(5):537–46.

    Article  CAS  PubMed  Google Scholar 

  40. Amara S, Patin A, Giuffrida F, Wooster TJ, Thakkar SK, Bénarouche A, et al. In vitro digestion of citric acid esters of mono- and diglycerides (CITREM) and CITREM-containing infant formula/emulsions. Food Funct. 2014;5:1409–21.

    Article  CAS  PubMed  Google Scholar 

  41. Benzonana G. Sur le rôle des ions calcium durant l’hydrolyse des triglycérides insolubles par la lipase pancréatique en présence des sels biliaires. Biochim Biophys Acta. 1968;151:137–46.

    Article  CAS  PubMed  Google Scholar 

  42. Benzonana G, Desnuelle P. Action of some effectors on the hydolysis of long-chain triglycerides by pancreatic lipase. Biochim Biophys Acta. 1968;164(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  43. Egret-Charlier M, Sanson A, Ptak M. Ionization of fatty acids at the lipid--water interface. FEBS Lett. 1978;89(2):313–6.

    Article  CAS  PubMed  Google Scholar 

  44. Small DM, Cabral DJ, Cistola DP, Parks JS, Hamilton JA. The ionization behavior of fatty acids and bile acids in micelles and membranes. Hepatology. 1984;4(5 Suppl):77S–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work results from a joint collaboration between members of the LFCS Consortium, which received funding primarily from Capsugel, Sanofi R&D, Gattefossé, and Merck Serono with additional funding from NicOx, Roche, Bristol-Myers Squibb, and Actelion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Carrière.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakala-N’Goma, JC., Williams, H.D., Sassene, P.J. et al. Toward the Establishment of Standardized In Vitro Tests for Lipid-Based Formulations. 5. Lipolysis of Representative Formulations by Gastric Lipase. Pharm Res 32, 1279–1287 (2015). https://doi.org/10.1007/s11095-014-1532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1532-y

KEY WORDS

Navigation