Skip to main content

Advertisement

Log in

Enhancing the Buccal Mucosal Delivery of Peptide and Protein Therapeutics

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

With continuing advances in biotechnology and genetic engineering, there has been a dramatic increase in the availability of new biomacromolecules, such as peptides and proteins that have the potential to ameliorate the symptoms of many poorly-treated diseases. Although most of these macromolecular therapeutics exhibit high potency, their large molecular mass, susceptibility to enzymatic degradation, immunogenicity and tendency to undergo aggregation, adsorption, and denaturation have limited their ability to be administered via the traditional oral route. As a result, alternative noninvasive routes have been investigated for the systemic delivery of these macromolecules, one of which is the buccal mucosa. The buccal mucosa offers a number of advantages over the oral route, making it attractive for the delivery of peptides and proteins. However, the buccal mucosa still exhibits some permeability-limiting properties, and therefore various methods have been explored to enhance the delivery of macromolecules via this route, including the use of chemical penetration enhancers, physical methods, particulate systems and mucoadhesive formulations. The incorporation of anti-aggregating agents in buccal formulations also appears to show promise in other mucosal delivery systems, but has not yet been considered for buccal mucosal drug delivery. This review provides an update on recent approaches that have shown promise in enhancing the buccal mucosal transport of macromolecules, with a major focus on proteins and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs. 2010;1:116–31.

    PubMed Central  PubMed  Google Scholar 

  2. Swaan PW. Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways. Pharm Res. 1998;15:826–34.

    CAS  PubMed  Google Scholar 

  3. Brown LR. Commercial challenges of protein drug delivery. Expert Opin Drug Deliv. 2005;2:29–42.

    PubMed  Google Scholar 

  4. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15:40–56.

    CAS  PubMed  Google Scholar 

  5. Antosova Z, Mackova M, Kral V, Macek T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009;27:628–35.

    CAS  PubMed  Google Scholar 

  6. Osborne R. Fresh from the biotech pipeline-2012. Nat Biotechnol. 2013;31:100–3.

    CAS  PubMed  Google Scholar 

  7. Yamamoto A, Iseki T, Ochi-Sugiyama M, Okada N, Fujita T, Muranishi S. Absorption of water-soluble compounds with different molecular weights and [Asu1.7]-eel calcitonin from various mucosal administration sites. J Control Release. 2001;76:363–74.

  8. Mahato RI, Narang AS, Thoma L, Miller DD. Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst. 2003;20:153–214.

    CAS  PubMed  Google Scholar 

  9. Motlekar NA, Youan BB. The quest for non-invasive delivery of bioactive macromolecules: a focus on heparins. J Control Release. 2006;113:91–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Sharma S, Kulkarni J, Pawar AP. Permeation enhancers in the transmucosal delivery of macromolecules. Die Pharm. 2006;61:495–504.

    CAS  Google Scholar 

  11. Jitendra PK, Sharma S, Bansal AB. Noninvasive routes of proteins and peptides drug delivery. Indian J Pharm Sci. 2011;73:367–75.

  12. Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29:13–38.

    PubMed  Google Scholar 

  13. Merkus FWHM, Schipper NGM, Hermens WAJJ, Romeijn SG, Verhoef JC. Absorption enhancers in nasal drug delivery - efficacy and safety. J Control Release. 1993;24:201–8.

    CAS  Google Scholar 

  14. Morimoto K, Uehara Y, Iwanaga K, Kakemi M, Ohashi Y, Tanaka A, et al. Influence of absorption enhancers (bile salts) and the preservative (benzalkonium chloride) on mucociliary function and permeation barrier function in rabbit tracheas. Eur J Pharm Sci. 1998;6:225–30.

    CAS  PubMed  Google Scholar 

  15. Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release. 2005;103:301–13.

    CAS  PubMed  Google Scholar 

  16. Chatterjee A, Kumar L, Bhowmik BB, Gupta A. Microparticulated anti-HIV vaginal gel: in vitro-in vivo drug release and vaginal irritation study. Pharm Dev Technol. 2011;16:466–73.

    CAS  PubMed  Google Scholar 

  17. Sozio P, Cerasa LS, Marinelli L, Di Stefano A. Transdermal donepezil on the treatment of Alzheimer’s disease. Neuropsychiatr Dis Treat. 2012;8:361–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Swaminathan J, Ehrhardt C. Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv. 2012;9:1489–503.

    CAS  PubMed  Google Scholar 

  19. Newman S. Improving inhaler technique, adherence to therapy and the precision of dosing: major challenges for pulmonary drug delivery. Expert Opin Drug Deliv. 2014;11:365–78.

    CAS  PubMed  Google Scholar 

  20. Rathbone MJ, Drummond BK, Tucker IG. The oral cavity as a site for systemic drug-delivery. Adv Drug Deliv Rev. 1994;13:1–22.

    CAS  Google Scholar 

  21. Devries ME, Bodde HE, Verhoef JC, Junginger HE. Developments in buccal drug delivery. Crit Rev Ther Drug Carrier Syst. 1991;8:271–303.

    CAS  Google Scholar 

  22. Ciach T, Moscicka-Studzinska A. Buccal iontophoresis: an opportunity for drug delivery and metabolite monitoring. Drug Discov Today. 2011;16:361–6.

    CAS  PubMed  Google Scholar 

  23. Stratford RE, Lee VHL. Aminopeptidase activity in homogenates of various absorptive mucosae in the albino rabbit - implications in peptide delivery. Int J Pharm. 1986;30:73–82.

    CAS  Google Scholar 

  24. Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release. 2011;153:106–16.

    CAS  PubMed  Google Scholar 

  25. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery–a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40.

    CAS  PubMed  Google Scholar 

  26. Pather SI, Rathbone MJ, Senel S. Current status and the future of buccal drug delivery systems. Expert Opin Drug Deliv. 2008;5:531–42.

    CAS  PubMed  Google Scholar 

  27. Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides. Eur J Pharm Biopharm. 2001;51:93–109.

    CAS  PubMed  Google Scholar 

  28. Annabestani Z, Sharghi S, Shahbazi S, Monfared SSMS, Karimi F, Taheri E, Heshmat R, Larijani B. Insulin buccal spray (Oral-Lyn) efficacy in type 1 diabetes. Iranian J Diabetes and Lipid Dis. 2010;9.

  29. Pozzilli P, Manfrini S, Costanza F, Coppolino G, Cavallo MG, Fioriti E, et al. Biokinetics of buccal spray insulin in patients with type 1 diabetes. Metab Clin Exp. 2005;54:930–4.

    CAS  PubMed  Google Scholar 

  30. Heinemann L, Jacques Y. Oral insulin and buccal insulin: a critical reappraisal. J Diabetes Sci Technol. 2009;3:568–84.

    PubMed Central  PubMed  Google Scholar 

  31. Senel S, Rathbone MJ, Cansiz M, Pather I. Recent developments in buccal and sublingual delivery systems. Expert Opin Drug Deliv. 2012;9:615–28.

    CAS  PubMed  Google Scholar 

  32. Generex. Generex Oral-lyn. http://www.generex.com/index.php/id/270 (accessed 05/05/2014).

  33. Oh DH, Chun KH, Jeon SO, Kang JW, Lee S. Enhanced transbuccal salmon calcitonin (sCT) delivery: effect of chemical enhancers and electrical assistance on in vitro sCT buccal permeation. Eur J Pharm Biopharm. 2011;79:357–63.

    CAS  PubMed  Google Scholar 

  34. Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci. 1992;81:1–10.

    CAS  PubMed  Google Scholar 

  35. Wertz PW, Squier CA. Cellular and molecular basis of barrier function in oral epithelium. Crit Rev Ther Drug Carrier Syst. 1991;8:237–69.

    CAS  PubMed  Google Scholar 

  36. Teubl BJ, Absenger M, Frohlich E, Leitinger G, Zimmer A, Roblegg E. The oral cavity as a biological barrier system: design of an advanced buccal in vitro permeability model. Eur J Pharm Biopharm. 2013;84:386–93.

    CAS  PubMed  Google Scholar 

  37. Squier CA, Wertz PW. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ and Swarbrick J, editors. Oral mucosal drug delivery. New York: Marcel Dekker, Inc.; 1996. p. 1–26.

  38. Diaz-Del Consuelo I, Jacques Y, Pizzolato GP, Guy RH, Falson F. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch Oral Biol. 2005;50:981–7.

    CAS  PubMed  Google Scholar 

  39. Law S, Wertz PW, Swartzendruber DC, Squier CA. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch Oral Biol. 1995;40:1085–91.

    CAS  PubMed  Google Scholar 

  40. Wertz PW, Swartzendruber DC, Squier CA. Regional variation in the structure and permeability of oral mucosa and skin. Adv Drug Deliv Rev. 1993;12:1–12.

    Google Scholar 

  41. Zhang H, Robinson JR. Routes of drug transport across oral mucosa. In: Rathboneand MJ, Swarbrick J, editors. Oral mucosal drug delivery. New York: Marcel Dekker, Inc.; 1996. p. 51–64.

    Google Scholar 

  42. Hao J, Heng PW. Buccal delivery systems. Drug Dev Ind Pharm. 2003;29:821–32.

    CAS  PubMed  Google Scholar 

  43. Senel S, Kremer M, Nagy K, Squier C. Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Curr Pharm Biotechnol. 2001;2:175–86.

    CAS  PubMed  Google Scholar 

  44. Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers–how do they really work? J Control Release. 2005;105:1–15.

    CAS  PubMed  Google Scholar 

  45. Senel S, Hincal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release. 2001;72:133–44.

    CAS  PubMed  Google Scholar 

  46. Veerman ECI, van den Keybus PAM, Vissink A, Amerongen AVN. Human glandular salivas: their separate collection and analysis. Eur J Oral Sci. 1996;104:346–52.

    CAS  PubMed  Google Scholar 

  47. Bardow A, Madsen J, Nauntofte B. The bicarbonate concentration in human saliva does not exceed the plasma level under normal physiological conditions. Clin Oral Investig. 2000;4:245–53.

    CAS  PubMed  Google Scholar 

  48. Bykov VL. The tissue and cell defense mechanisms of the oral mucosa. Morfologia. 1996;110:14–24.

  49. Jankowska AK, Waszkiel D, Kowalczyk A. Saliva as a main component of oral cavity ecosystem Part I. Secretion and function. Wiad Lek. 2007;60:148–54.

    PubMed  Google Scholar 

  50. Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57:1666–91.

    CAS  PubMed  Google Scholar 

  51. Edsman K, Hagerstrom H. Pharmaceutical applications of mucoadhesion for the non-oral routes. J Pharm Pharmacol. 2005;57:3–22.

    CAS  PubMed  Google Scholar 

  52. Jones DS, Woolfson AD, Djokic J, Coulter WA. Development and mechanical characterization of bioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontal diseases. Pharm Res. 1996;13:1734–8.

    CAS  PubMed  Google Scholar 

  53. Yamamoto A, Hayakawa E, Lee VH. Insulin and proinsulin proteolysis in mucosal homogenates of the albino rabbit: implications in peptide delivery from nonoral routes. Life Sci. 1990;47:2465–74.

    CAS  PubMed  Google Scholar 

  54. Kashi SD, Lee VH. Enkephalin hydrolysis in homogenates of various absorptive mucosae of the albino rabbit: similarities in rates and involvement of aminopeptidases. Life Sci. 1986;38:2019–28.

    CAS  PubMed  Google Scholar 

  55. Dowty ME, Knuth KE, Irons BK, Robinson JR. Transport of thyrotropin releasing hormone in rabbit buccal mucosa in vitro. Pharm Res. 1992;9:1113–22.

    CAS  PubMed  Google Scholar 

  56. Nakada Y, Awata N, Ikuta Y, Goto S. The effect of bile salts on the oral mucosal absorption of human calcitonin in rats. J Pharmacobiodyn. 1989;12:736–43.

    CAS  PubMed  Google Scholar 

  57. Lee VH, Yamamoto A. Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev. 1990;4:171–207.

    CAS  Google Scholar 

  58. Lee VH. Enzymatic barriers to peptide and protein absorption. Crit Rev Ther Drug Carrier Syst. 1988;5:69–97.

    CAS  PubMed  Google Scholar 

  59. Lee VH. Peptidase activities in absorptive mucosae. Biochem Soc Trans. 1989;17:937–40.

    CAS  PubMed  Google Scholar 

  60. Verhoef JC, Bodde HE, de Boer AG, Bouwstra JA, Junginger HE, Merkus FW, et al. Transport of peptide and protein drugs across biological membranes. Eur J Drug Metab Pharmacokinet. 1990;15:83–93.

    CAS  PubMed  Google Scholar 

  61. Yamahara H, Lee VHL. Drug metabolism in the oral cavity. Adv Drug Deliv Rev. 1993;12:25–39.

    CAS  Google Scholar 

  62. Kragelund C, Hansen C, Torpet LA, Nauntofte B, Brosen K, Pedersen AM, et al. Expression of two drug-metabolizing cytochrome P450-enzymes in human salivary glands. Oral Dis. 2008;14:533–40.

    CAS  PubMed  Google Scholar 

  63. Xin Hua Z, Alain P, Wan L. Comparison of enzyme activities of tissues lining portals of absorption of drugs: species differences. Int J Pharm. 1991;70:271–83.

    Google Scholar 

  64. Aungst BJ, Rogers NJ. Site dependence of absorption-promoting actions of laureth-9, Na salicylate, Na2EDTA, and aprotinin on rectal, nasal, and buccal insulin delivery. Pharm Res. 1988;5:305–8.

  65. Walker GF, Langoth N, Bernkop-Schnurch A. Peptidase activity on the surface of the porcine buccal mucosa. Int J Pharm. 2002;233:141–7.

    CAS  PubMed  Google Scholar 

  66. Cui F, He C, He M, Tang C, Yin L, Qian F, et al. Preparation and evaluation of chitosan-ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin. J Biomed Mat Res A. 2009;89:1063–71.

    Google Scholar 

  67. Xu H-B, Huang K-X, Zhu Y-S, Gao Q-H, Wu Q-Z, Tian W-Q, et al. Hypoglycaemic effect of a novel insulin buccal formulation on rabbits. Pharmacol Res. 2002;46:459–67.

    CAS  PubMed  Google Scholar 

  68. Sahni J, Raj S, Ahmad FJ, Khar RK. Design and in vitro characterization of buccoadhesive drug delivery system of insulin. Indian J Pharm Sci. 2008;70:61–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Bird AP, Faltinek JR, Shojaei AH. Transbuccal peptide delivery: stability and in vitro permeation studies on endomorphin-1. J Control Release. 2001;73:31–6.

    CAS  PubMed  Google Scholar 

  70. Rónai AZ, Timár J, Mako E, Erdóo F, Gyarmati Z, Tóth G, et al. Diprotin, an inhibitor of dipeptidyl aminopeptidase IV(EC 3.4.14.5) produces naloxone — reversible analgesia in rats. Life Sci. 1998;64:145–52.

    Google Scholar 

  71. Veuillez F, Deshusses J, Buri P. Synthesis and characterization of an acylated di-peptide (Myr-Trp-Leu) with modified transmucosal transport properties. Eur J Pharm Biopharm. 1999;48:21–6.

    CAS  PubMed  Google Scholar 

  72. Yang C, Tirucherai GS, Mitra AK. Prodrug based optimal drug delivery via membrane transporter/receptor. Expert Opin Biol Ther. 2001;1:159–75.

    CAS  PubMed  Google Scholar 

  73. Yamada K, Murakami M, Yamamoto A, Takada K, Muranishi S. Improvement of intestinal absorption of thyrotropin-releasing hormone by chemical modification with lauric acid. J Pharm Pharmacol. 1992;44:717–21.

    CAS  PubMed  Google Scholar 

  74. Muranishi S, Yamamoto A. Modification of peptides for intestinal delivery. Top Pharm Sci. 1994; 373–3821994

  75. Li C, Koch RL, Raul VA, Bhatt PP, Johnston TP. Absorption of thyrotropin-releasing hormone in rats using a mucoadhesive buccal patch. Drug Dev Ind Pharm. 1997;23:239–46.

    CAS  Google Scholar 

  76. Chinwala MG, Lin S. Application of hydrogel polymers for development of thyrotropin releasing hormone-loaded adhesive buccal patches. Pharm Dev Technol. 2010;15:311–27.

    CAS  PubMed  Google Scholar 

  77. Bundgaard H, Møss J. Prodrugs of peptides. 6. Bioreversible derivatives of thyrotropin-releasing hormone (TRH) with increased lipophilicity and resistance to cleavage by the TRH-specific serum enzyme. Pharm Res. 1990;7:885–92.

    CAS  PubMed  Google Scholar 

  78. Bundgaard H, Rasmussen GJ. Prodrugs of peptides. 9. Bioreversible N-α-hydroxyalkylation of the peptide bond to effect protection against carboxypeptidase or other proteolytic enzymes. Pharm Res. 1991;8:313–22.

  79. Hassan N, Ahad A, Ali M, Ali J. Chemical permeation enhancers for transbuccal drug delivery. Expert Opin Drug Deliv. 2010;7:97–112.

    CAS  PubMed  Google Scholar 

  80. Smart JD. Buccal drug delivery. Expert Opin Drug Deliv. 2005;2:507–17.

    CAS  PubMed  Google Scholar 

  81. Bonferoni MC, Sandri G, Rossi S, Ferrari F, Caramella C. Chitosan and its salts for mucosal and transmucosal delivery. Expet Opin Drug Deliv. 2009;6:923–39.

    CAS  Google Scholar 

  82. Zhang J, Niu S, Ebert C, Stanley TH. An in vivo dog model for studying recovery kinetics of the buccal mucosa permeation barrier after exposure to permeation enhancers: apparent evidence of effective enhancement without tissue damage. Int J Pharm. 1994;101:15–22.

    CAS  Google Scholar 

  83. Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm. 2010;36:254–82.

    CAS  PubMed  Google Scholar 

  84. Aungst BJ. Absorption enhancers: applications and advances. AAPS J. 2012;14:10–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Hearnden V, Sankar V, Hull K, Juras DV, Greenberg M, Kerr AR, et al. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev. 2012;64:16–28.

    CAS  PubMed  Google Scholar 

  86. Nicolazzo JA, Reed BL, Finnin BC. Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol. J Pharm Sci. 2004;93:431–40.

    CAS  PubMed  Google Scholar 

  87. Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm. 1992;85:129–40.

    CAS  Google Scholar 

  88. Senel S, Hoogstraate AJ, Spies F, Verhoef JC, Bos-van Geest A, Junginger HE, et al. Enhancement of in vitro permeability of porcine buccal mucosa by bile salts: kinetic and histological studies. J Control Release. 1994;32:45–56.

    CAS  Google Scholar 

  89. Şenel S, Çapan Y, Sargon MF, İkinci G, Şolpan D, Güven O, et al. Enhancement of transbuccal permeation of morphine sulfate by sodium glycodeoxycholate in vitro. J Control Release. 1997;45:153–62.

    Google Scholar 

  90. Xiang J, Fang X, Li X. Transbuccal delivery of 2′,3′-dideoxycytidine: in vitro permeation study and histological investigation. Int J Pharm. 2002;231:57–66.

    CAS  PubMed  Google Scholar 

  91. Nicolazzo JA, Reed BL, Finnin BC. Enhancing the buccal mucosal uptake and retention of triamcinolone acetonide. J Control Release. 2005;105:240–8.

    CAS  PubMed  Google Scholar 

  92. Hoogstraate AJ, Wertz PW, Squier CA, Bos-van Geest A, Abraham W, Garrison MD, et al. Effects of the penetration enhancer glycodeoxycholate on the lipid integrity in porcine buccal epithelium in vitro. Eur J Pharm Sci. 1997;5:189–98.

    CAS  Google Scholar 

  93. Hoogstraate AJ, Senel S, Cullander C, Verhoef J, Junginger HE, Bodde HE. Effects of bile salts on transport rates and routes of FITC-labelled compounds across porcine buccal epithelium in vitro. J Control Release. 1996;40:211–21.

    CAS  Google Scholar 

  94. Starokadomskyy PL, Dubey IY. New absorption promoter for the buccal delivery: preparation and characterization of lysalbinic acid. Int J Pharm. 2006;308:149–54.

    CAS  PubMed  Google Scholar 

  95. Kurosaki Y, Takatori T, Nishimura H, Nakayama T, Kimura T. Regional variation in oral mucosal drug absorption: permeability and degree of keratinization in hamster oral cavity. Pharm Res. 1991;8:1297–301.

    CAS  PubMed  Google Scholar 

  96. Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. JNCI Monographs 2001;7–15.

  97. Morishita M, Barichello JM, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm. 2001;212:289–93.

    CAS  PubMed  Google Scholar 

  98. Lee J, Kellaway IW. Combined effect of oleic acid and polyethylene glycol 200 on buccal permeation of [D-ala2, D-leu5]enkephalin from a cubic phase of glyceryl monooleate. Int J Pharm. 2000;204:137–44.

    CAS  PubMed  Google Scholar 

  99. Tsutsumi K, Obata Y, Takayama K, Loftsson T, Nagai T. Effect of cod-liver oil extract on the buccal permeation of ergotamine tartrate. Drug Dev Ind Pharm. 1998;24:757–62.

    CAS  PubMed  Google Scholar 

  100. Turunen TM, Urtti A, Paronen P, Audus KL, Rytting JH. Effect of some penetration enhancers on epithelial membrane lipid domains: evidence from fluorescence spectroscopy studies. Pharm Res. 1994;11:288–94.

    CAS  PubMed  Google Scholar 

  101. Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000;50:179–88.

    CAS  PubMed  Google Scholar 

  102. Coutelegros A, Maitani Y, Veillard M, Machida Y, Nagai T. Combined effects of pH, cosolvent and penetration enhancers on the invitro buccal absorption of propranolol through excised hamster-cheek pouch. Int J Pharm. 1992;84:117–28.

  103. Jiang SJ, Zhou XJ. Examination of the mechanism of oleic acid-induced percutaneous penetration enhancement: an ultrastructural study. Biol Pharm Bull. 2003;26:66–8.

    CAS  PubMed  Google Scholar 

  104. Riva R, Ragelle H, des Rieux A, Duhem N, Jerome C, Preat V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polym Sci. 2011;244:19–44.

    CAS  Google Scholar 

  105. Hu L, Sun Y, Wu Y. Advances in chitosan-based drug delivery vehicles. Nanoscale. 2013;5:3103–11.

    CAS  PubMed  Google Scholar 

  106. Colonna C, Genta I, Perugini P, Pavanetto F, Modena T, Valli M, et al. 5-methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech. 2006;7:E107–13.

    PubMed Central  Google Scholar 

  107. Portero A, Remunan-Lopez C, Nielsen HM. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium. Pharm Res. 2002;19:169–74.

    CAS  PubMed  Google Scholar 

  108. Sandri G, Rossi S, Bonferoni MC, Ferrari F, Zambito Y, Di Colo G, et al. Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int J Pharm. 2005;297:146–55.

    CAS  PubMed  Google Scholar 

  109. Sandri G, Poggi P, Bonferoni MC, Rossi S, Ferrari F, Caramella C. Histological evaluation of buccal penetration enhancement properties of chitosan and trimethyl chitosan. J Pharm Pharmacol. 2006;58:1327–36.

    CAS  PubMed  Google Scholar 

  110. Roldo M, Hornof M, Caliceti P, Bernkop-Schnurch A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur J Pharm Biopharm. 2004;57:115–21.

    CAS  PubMed  Google Scholar 

  111. Bernkop-Schnurch A, Guggi D, Pinter Y. Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J Control Release. 2004;94:177–86.

    CAS  PubMed  Google Scholar 

  112. Roldo M, Hornof M, Caliceti P, Bernkop-Schnürch A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur J Pharm Biopharm. 2004;57:115–21.

    CAS  PubMed  Google Scholar 

  113. Bernkop-Schnurch A, Hornof M, Zoidl T. Thiolated polymers–thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int J Pharm. 2003;260:229–37.

    CAS  PubMed  Google Scholar 

  114. Bernkop-Schnurch A, Thaler SC. Polycarbophil-cysteine conjugates as platforms for oral polypeptide delivery systems. J Pharm Sci. 2000;89:901–9.

    CAS  PubMed  Google Scholar 

  115. Langoth N, Kahlbacher H, Schöffmann G, Schmerold I, Schuh M, Franz S, et al. Thiolated chitosans: design and in vivo evaluation of a mucoadhesive buccal peptide drug delivery system. Pharm Res. 2006;23:573–9.

    CAS  PubMed  Google Scholar 

  116. Shinkar DM, Dhake AS, Setty CM. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems. PDA J Pharm Sci. 2012;66:466–500.

    Google Scholar 

  117. Rai V, Tan HS, Michniak-Kohn B. Effect of surfactants and pH on naltrexone (NTX) permeation across buccal mucosa. Int J Pharm. 2011;411:92–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Shore PA, Brodie BB, Hogben CA. The gastric secretion of drugs: a pH partition hypothesis. J Pharmacol Exp Ther. 1957;119:361–9.

    CAS  PubMed  Google Scholar 

  119. Leskovac V. The pH dependence of enzyme catalysis. In Leskovac V, editor. Comprehensive enzyme kinetics. Springer: US; 2004. p. 283–315.

  120. Nakane S, Kakumoto M, Yukimatsu K, Chien YW. Oramucosal delivery of LHRH: pharmacokinetic studies of controlled and enhanced transmucosal permeation. Pharm Dev Technol. 1996;1:251–9.

    CAS  PubMed  Google Scholar 

  121. Park H, Robinson JR. Physico-chemical properties of water insoluble polymers important to mucin/epithelial adhesion. J Control Release. 1985;2:47–57.

    CAS  Google Scholar 

  122. Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11:393–407.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Gratieri T, Kalaria D, Kalia YN. Non-invasive iontophoretic delivery of peptides and proteins across the skin. Expert Opin Drug Deliv. 2011;8:645–63.

    CAS  PubMed  Google Scholar 

  124. Singh P, Maibach HI. Iontophoresis in drug delivery: basic principles and applications. Crit Rev Ther Drug Carrier Syst. 1994;11:161–213.

    CAS  PubMed  Google Scholar 

  125. Shidhaye SS, Saindane NS, Sutar S, Kadam V. Mucoadhesive bilayered patches for administration of sumatriptan succinate. AAPS PharmSciTech. 2008;9:909–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Dhote V, Bhatnagar P, Mishra PK, Mahajan SC, Mishra DK. Iontophoresis: a potential emergence of a transdermal drug delivery system. Sci Pharm. 2012;80:1–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Rojanasakul Y, Wang LY, Bhat M, Glover DD, Malanga CJ, Ma JK. The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res. 1992;9:1029–34.

    CAS  PubMed  Google Scholar 

  128. Guy RH. Current status and future prospects of transdermal drug delivery. Pharm Res. 1996;13:1765–9.

    CAS  PubMed  Google Scholar 

  129. Huang Y-Y, Wu S-M. Stability of peptides during iontophoretic transdermal delivery. Int J Pharm. 1996;131:19–23.

    CAS  Google Scholar 

  130. Chou W-L, Cheng C-H, Yen S-C, Jiang T-S. The enhanced iontophoretic transport of TRH and its impedance study. Drug Dev Ind Pharm. 1996;22:943–50.

    CAS  Google Scholar 

  131. Riviere JE, Heit MC. Electrically-assisted transdermal drug delivery. Pharm Res. 1997;14:687–97.

    CAS  PubMed  Google Scholar 

  132. Kalia YN, Naik A, Garrison J, Guy RH. Iontophoretic drug delivery. Adv Drug Deliv Rev. 2004;56:619–58.

    CAS  PubMed  Google Scholar 

  133. Patel MP, Churchman ST, Cruchley AT, Braden M, Williams DM. Electrically induced transport of macromolecules through oral buccal mucosa. Dent Mater. 2013;29:674–81.

    CAS  PubMed  Google Scholar 

  134. Lee V, Lee VHL, Hashida M, Mizushima Y. Trends and future perspectives in peptide and protein drug delivery. Taylor & Francis; 1995.

  135. Sage BH BC, Denuzzio JD, Hocke RA. Technological and developmental issues of iontophoretic transport of peptide and protein drugs. In: Lee VHL HM, Mizushima Y, editors. Trends and future perspectives in peptide and protein drug delivery. Switzerland: Harwood Academic; 1995. p. 111–34.

    Google Scholar 

  136. Patel MP, Churchman ST, Cruchley AT, Braden M, Williams DM. Delivery of macromolecules across oral mucosa from polymeric hydrogels is enhanced by electrophoresis (iontophoresis). Dent Mater. 2013;29:e299–307.

    CAS  PubMed  Google Scholar 

  137. Choi EH, Lee SH, Ahn SK, Hwang SM. The pretreatment effect of chemical skin penetration enhancers in transdermal drug delivery using iontophoresis. Skin Pharmacol Appl Skin Physiol. 1999;12:326–35.

    CAS  PubMed  Google Scholar 

  138. Dixit N, Bali V, Baboota S, Ahuja A, Ali J. Iontophoresis - an approach for controlled drug delivery: a review. Curr Drug Deliv. 2007;4:1–10.

    CAS  PubMed  Google Scholar 

  139. Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428:143–51.

    CAS  PubMed  Google Scholar 

  140. Cui F, He C, He M, Tang C, Yin L, Qian F, et al. Preparation and evaluation of chitosan-ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin. J Biomed Mater Res A. 2009;89:1063–71.

    PubMed  Google Scholar 

  141. Moebus K, Siepmann J, Bodmeier R. Alginate-poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur J Pharm Biopharm. 2009;72:42–53.

    CAS  PubMed  Google Scholar 

  142. Gombotz WR, Wee S. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.

    CAS  PubMed  Google Scholar 

  143. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    CAS  PubMed  Google Scholar 

  144. Perumal VA, Govender T, Lutchman D, Mackraj I. Investigating a new approach to film casting for enhanced drug content uniformity in polymeric films. Drug Dev Ind Pharm. 2008;34:1036–47.

    CAS  PubMed  Google Scholar 

  145. Luo Y, Xu H, Huang K, Gao Z, Peng H, Sheng X. Study on a nanoparticle system for buccal delivery of insulin. Conf Proc IEEE Eng Med Biol Soc. 2005;5:4842–5.

    PubMed  Google Scholar 

  146. Serra L, Doménech J, Peppas NA. Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems. Eur J Pharm Biopharm. 2006;63:11–8.

    CAS  PubMed  Google Scholar 

  147. Zheng C, Zhang XG, Sun L, Zhang ZP, Li CX. Biodegradable and redox-responsive chitosan/poly(L-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides. J Mater Sci Mater Med. 2013;24:931–9.

    CAS  PubMed  Google Scholar 

  148. Yang TZ, Wang XT, Yan XY, Zhang Q. Phospholipid deformable vesicles for buccal delivery of insulin. Chem Pharm Bull. 2002;50:749–53.

    CAS  PubMed  Google Scholar 

  149. Duchěne D, Touchard F, Peppas NA. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev Ind Pharm. 1988;14:283–318.

    Google Scholar 

  150. Smart JD. The role of water movement and polymer hydration in mucoadhesion. Bioadhesive drug delivery systems. CRC Press; 1999, p. 11–23.

  151. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57:1556–68.

    CAS  PubMed  Google Scholar 

  152. Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J Pharm Sci. 2000;89:850–66.

    CAS  PubMed  Google Scholar 

  153. Silberberg-Bouhnik M, Ramon O, Ladyzhinski I, Mizrahi S, Cohen Y. Osmotic deswelling of weakly charged poly(acrylic acid) solutions and gels. J Polym Sci Pol Phys. 1995;33:2269–79.

    CAS  Google Scholar 

  154. Smart JD. Drug delivery using buccal-adhesive systems. Adv Drug Deliver Rev. 1993;11:253–70.

    CAS  Google Scholar 

  155. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71:505–18.

    CAS  PubMed  Google Scholar 

  156. Morales JO, Ross AC, McConville JT. Protein-coated nanoparticles embedded in films as delivery platforms. J Pharm Pharmacol. 2013;65:827–38.

    CAS  PubMed  Google Scholar 

  157. Portero A, Teijeiro-Osorio D, Alonso MJ, Remunan-Lopez C. Development of chitosan sponges for buccal administration of insulin. Carbohyd Polym. 2007;68:617–25.

    CAS  Google Scholar 

  158. Ayensu I, Mitchell JC, Boateng JS. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. Colloids Surf B: Biointerfaces. 2012;91:258–65.

    CAS  PubMed  Google Scholar 

  159. Matthews KH, Stevens HN, Auffret AD, Humphrey MJ, Eccleston GM. Lyophilised wafers as a drug delivery system for wound healing containing methylcellulose as a viscosity modifier. Int J Pharm. 2005;289:51–62.

    CAS  PubMed  Google Scholar 

  160. Boateng JS, Auffret AD, Matthews KH, Humphrey MJ, Stevens HN, Eccleston GM. Characterisation of freeze-dried wafers and solvent evaporated films as potential drug delivery systems to mucosal surfaces. Int J Pharm. 2010;389:24–31.

    CAS  PubMed  Google Scholar 

  161. Morra G, Meli M, Colombo G. Molecular dynamics simulations of proteins and peptides: from folding to drug design. Curr Protein Pept Sc. 2008;9:181–96.

    CAS  Google Scholar 

  162. Vendruscolo M, Dobson CM. Structural biology: protein self-assembly intermediates. Nat Chem Biol. 2013;9:216–7.

    CAS  PubMed  Google Scholar 

  163. Gorbenko G, Trusova V. Protein aggregation in a membrane environment. Adv Protein Chem Struct Biol. 2011;84:113–42.

    CAS  PubMed  Google Scholar 

  164. Nault L, Vendrely C, Brechet Y, Bruckert F, Weidenhaupt M. Peptides that form beta-sheets on hydrophobic surfaces accelerate surface-induced insulin amyloidal aggregation. FEBS Lett. 2013;587:1281–6.

    CAS  PubMed  Google Scholar 

  165. Bauer HH, Aebi U, Haner M, Hermann R, Muller M, Merkle HP. Architecture and polymorphism of fibrillar supramolecular assemblies produced by in vitro aggregation of human calcitonin. J Struct Biol. 1995;115:1–15.

    CAS  PubMed  Google Scholar 

  166. Katakam M, Banga AK. Aggregation of insulin and its prevention by carbohydrate excipients. PDA J Pharm Sci Technol. 1995;49:160–5.

    CAS  PubMed  Google Scholar 

  167. Gibson TJ, Murphy RM. Inhibition of insulin fibrillogenesis with targeted peptides. Protein Sci. 2006;15:1133–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Arora A, Ha C, Park CB. Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett. 2004;564:121–5.

    CAS  PubMed  Google Scholar 

  169. Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E. Toward understanding insulin fibrillation. J Pharm Sci. 1997;86:517–25.

    CAS  PubMed  Google Scholar 

  170. Grau U, Saudek CD. Stable insulin preparation for implanted insulin pumps - laboratory and animal trials. Diabetes. 1987;36:1453–9.

    CAS  PubMed  Google Scholar 

  171. Hoogstraate AJ, Coos Verhoef J, Pijpers A, van Leengoed LA, Verheijden JH, Junginger HE, et al. In vivo buccal delivery of the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. Pharm Res. 1996;13:1233–7.

    CAS  PubMed  Google Scholar 

  172. Hoogstraate AJ, Verhoef JC, Tuk B, Pijpers A, van Leengoed LA, Verheijden JH, et al. In-vivo buccal delivery of fluorescein isothiocyanate-dextran 4400 with glycodeoxycholate as an absorption enhancer in pigs. J Pharm Sci. 1996;85:457–60.

    CAS  PubMed  Google Scholar 

  173. Aungst BJ, Rogers NJ. Comparison of the effects of various transmucosal absorption promoters on buccal insulin delivery. Int J Pharm. 1989;53:227–35.

    CAS  Google Scholar 

  174. Oh CK, Ritschel WA. Biopharmaceutic aspects of buccal absorption of insulin. Methods Find Exp Clin Pharmacol. 1990;12:205–12.

    CAS  PubMed  Google Scholar 

  175. Aungst BJ. Site-dependence and structure-effect relationships for alkylglycosides as transmucosal absorption promoters for insulin. Int J Pharm. 1994;105:219–25.

    CAS  Google Scholar 

  176. Steward A, Bayley DL, Howes C. The effect of enhancers on the buccal absorption of hybrid (BDBB) alpha-interferon. Int J Pharm. 1994;104:145–9.

    CAS  Google Scholar 

  177. Langoth N, Bernkop-Schnürch A, Kurka P. In vitro evaluation of various buccal permeation enhancing systems for PACAP (pituitary adenylate cyclase-activating polypeptide). Pharm Res. 2005;22:2045–50.

    CAS  PubMed  Google Scholar 

  178. Johnston TP, Rahman A, Alur H, Shah D, Mitra AK. Permeation of unfolded basic fibroblast growth factor (bFGF) across rabbit buccal mucosa–does unfolding of bFGF enhance transport? Pharm Res. 1998;15:246–53.

    CAS  PubMed  Google Scholar 

  179. Jasti BR, Zhou S, Mehta RC, Li X. Permeability of antisense oligonucleotide through porcine buccal mucosa. Int J Pharm. 2000;208:35–9.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

T. Caon and C.M.O. Simões thank, respectively, CAPES/MEC and CNPq/MCTI, for providing his PhD scholarship (BEX 12349/12-7/“Sandwich” PhD Program) and her research fellowship. The work is also supported in part by the Australian National Health and Medical Research Council (number #1042481). RSN acknowledges fellowship support by the National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Nicolazzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caon, T., Jin, L., Simões, C.M.O. et al. Enhancing the Buccal Mucosal Delivery of Peptide and Protein Therapeutics. Pharm Res 32, 1–21 (2015). https://doi.org/10.1007/s11095-014-1485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1485-1

KEY WORDS

Navigation