Skip to main content
Log in

Tetanus Toxoids Loaded Glucomannosylated Chitosan Based Nanohoming Vaccine Adjuvant with Improved Oral Stability and Immunostimulatory Response

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The present report embarks on rational designing of stable and functionalized chitosan nanoparticles for oral mucosal immunization.

Methods

Stable glucomannosylated sCh-GM-NPs were prepared by tandem cross linking method followed by lyophilization. The in vitro stability of antigen and formulation, cellular uptake and immunostimulatory response were assessed by suitable experimental protocol.

Results

Stability testing ensured the chemical and conformation permanency of encapsulated TT as well as robustness of sCh-GM-NPs in simulated biological media. The antigen release from sCh-GM-NPs followed initial burst followed by controlled Weibull’s type of release profile. The higher intracellular uptake of sCh-GM-NPs in Raw 264.7 and Caco-2 was concentration and time dependent which mainly attributed to Clathrin and receptor mediated endocytosis via mannose and glucose receptor. The in vivo evaluation in animals revealed that sCh-GM-NPs posed significantly (p < 0.001) higher humoral, mucosal and cellular immune response than other counterparts. More importantly, commercial TT vaccine administered through oral or intramuscular route was unable to elicit all type of immune response.

Conclusion

The sCh-GM-NPs could be considered as promising vaccine adjuvant for oral tetanus immunization. Additionally, this technology expected to benefit the design and development of stable peroral formulation for administration of protein, peptides and variety of other antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization. Global vaccine action plan. 2011–2020. 2013.

  2. Arora NK, Lal AA, Hombach JM, Santos JI, Bhutta ZA, Sow SO, et al. The need for targeted implementation research to improve coverage of basic vaccines and introduction of new vaccines. Vaccine. 2013;31(2):B129–36.

    Article  PubMed  Google Scholar 

  3. Jain S, Harde H, Indulkar A, Agrawal AK. Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomedicine. 2014;10(2):431–40.

    Article  CAS  PubMed  Google Scholar 

  4. Centers for Disease Control Prevention. Global routine vaccination coverage-2012. MMWR Morb Mortal Wkly Rep. 2013;62(43):858–61.

    Google Scholar 

  5. Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8(11):1407–24.

    Article  CAS  PubMed  Google Scholar 

  6. Thanki K, Gangwal R, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170(1):15–40.

    Article  CAS  PubMed  Google Scholar 

  7. Lopez Leon T, Carvalho ELS, Seijo B, Ortega Vinuesa JL, Bastos Gonzalez D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci. 2005;283(2):344–51.

    Article  CAS  PubMed  Google Scholar 

  8. Sonaje K, Chen Y-J, Chen H-L, Wey S-P, Juang J-H, Nguyen H-N, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly (γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010;31(12):3384–94.

    Article  CAS  PubMed  Google Scholar 

  9. Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–51.

    Article  CAS  PubMed  Google Scholar 

  10. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–206.

    Article  CAS  PubMed  Google Scholar 

  11. Jain S, Indulkar A, Harde H, Agrawal AK. Oral mucosal immunization using glucomannosylated bilosomes. J Biomed Nanotechnol. 2014;10(6):932–47.

    Article  CAS  PubMed  Google Scholar 

  12. Pan Y, Li Y, Zhao H, Zheng J, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249(1–2):139–47.

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16(10):1576–81.

    Article  CAS  PubMed  Google Scholar 

  14. Ma Z, Yeoh HH, Lim LY. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci. 2002;91(6):1396–404.

    Article  CAS  PubMed  Google Scholar 

  15. Jain S, Chauhan DS, Jain AK, Swarnakar NK, Harde H, Mahajan RR, et al. Inventors A universal step-wise freeze drying process for lyophilization of pharmaceutical products. Indian Patent Application No. 2559/DEL/2011. Filed on 2011.

  16. Harde H, Agrawal AK, Jain S. Development of stabilized glucomannosylated Ch-NPs using tandem crosslinking method for oral vaccine delivery. Nanomedicine. 2014. doi:10.2217/NNM.13.225.

    Google Scholar 

  17. Jain S, Vyas S. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J Lipos Res. 2006;16(4):331–45.

    Article  CAS  Google Scholar 

  18. Lyng J, Bentzon MW. The quantitative estimation of diphtheria and tetanus toxoids. 1. The flocculation test and the Lf-unit. J Biol Stand. 1987;15(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  19. Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine. 2012;7(9):1311–37.

    Article  CAS  PubMed  Google Scholar 

  20. Shan X, Liu C, Yuan Y, Xu F, Tao X, Sheng Y, et al. In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer. Colloids Surf B. 2009;72(2):303–11.

    Article  CAS  Google Scholar 

  21. Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 2011;32(2):503–15.

    Article  CAS  PubMed  Google Scholar 

  22. Harde H, Agrawal AK, Jain S. Trilateral ‘3P’ mechanics of stabilized layersomes technology for efficient oral immunization. J Biomed Nanotechnol. 2014;10:1–19. doi:10.1166/jbn.2014.1913.

    Article  Google Scholar 

  23. Agrawal AK, Harde HP, Thanki K, Jain S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules. 2014;15(1):350–60.

    Article  CAS  PubMed  Google Scholar 

  24. Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, et al. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials. 2011;32(16):4052–7.

    Article  CAS  PubMed  Google Scholar 

  25. Singh M, Li X-M, Wang H, McGee J, Zamb T, Koff W, et al. Immunogenicity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine. Infect Immun. 1997;65(5):1716–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Men Y, Thomasin C, Merkle HP, Gander B, Corradin G. A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine. 1995;13(7):683–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B. 2005;44(2–3):65–73.

    Article  CAS  Google Scholar 

  28. Takigawa T, Endo Y. Effects of glutaraldehyde exposure on human health. J Occup Health. 2006;48(2):75–87.

    Article  CAS  PubMed  Google Scholar 

  29. Silin DS, Lyubomska OV, Jirathitikal V, Bourinbaiar AS. Oral vaccination: where we are? Expert Opin Drug Deliv. 2007;4(4):323–40.

    Article  CAS  PubMed  Google Scholar 

  30. Thomasin C, Corradin G, Men Y, Merkle HP, Gander B. Tetanus toxoid and synthetic malaria antigen containing poly (lactide)/poly (lactide-co-glycolide) microspheres: importance of polymer degradation and antigen release for immune response. J Control Release. 1996;41(1):131–45.

    Article  CAS  Google Scholar 

  31. Keler T, Ramakrishna V, Fanger MW. Mannose receptor-targeted vaccines. Expert Opin Biol Ther. 2004;4(12):1953–62.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Hasani H, Hinck CS, Cushman SW. Endocytosis of the glucose transporter GLUT4 is mediated by the GTPase dynamin. J Biol Chem. 1998;273(28):17504–10.

    Article  CAS  PubMed  Google Scholar 

  33. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997;14(11):1568–73.

    Article  CAS  PubMed  Google Scholar 

  34. Jain AK, Thanki K, Jain S. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part I. Formulation development, statistical optimization, and in vitro characterization. Pharm Res. 2014;31(4):923–45.

    Article  CAS  PubMed  Google Scholar 

  35. Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature. 1997;386(6623):410–4.

    Article  CAS  PubMed  Google Scholar 

  36. Des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  37. O’Hagan DT, Rappuoli R. Novel approaches to vaccine delivery. Pharm Res. 2004;21(9):1519–30.

    Article  PubMed  Google Scholar 

  38. Borrow R, Balmer P, Roper M. The immunological basis for immunization series. Module 3: tetanus. Geneva: Department of Immunization, Vaccines and Biologicals. World Health Organization; 2006. p. 8–10.

    Google Scholar 

  39. Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010;17(7):1055–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

Authors are grateful to Dr. M. L Mago and Lavit Jambu, Panacea Biotech, Lalru, Punjab, India for gift samples of TT, tetanus antitoxin, and necessary training. Authors are also thankful to Department of Biotechnology (DBT), Govt. of India, India for financial assistance, Council of Scientific and Industrial Research (CSIR) Govt. of India, India for providing fellowship to Mr. AKA, and Director, NIPER, SAS Nagar for providing necessary infrastructure facilities. Technical assistance provided by Mr. Rahul Mahajan in SEM analysis and Mr. Vinod Kumar in TEM analysis is also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harde, H., Agrawal, A.K. & Jain, S. Tetanus Toxoids Loaded Glucomannosylated Chitosan Based Nanohoming Vaccine Adjuvant with Improved Oral Stability and Immunostimulatory Response. Pharm Res 32, 122–134 (2015). https://doi.org/10.1007/s11095-014-1449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1449-5

KEY WORDS

Navigation