Skip to main content
Log in

Solid Lipid Particles for Oral Delivery of Peptide and Protein Drugs II – The Digestion of Trilaurin Protects Desmopressin from Proteolytic Degradation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the in vitro release and degradation of desmopressin from saturated triglyceride microparticles under both lipolytic and proteolytic conditions.

Methods

The release of desmopressin from different solid lipid microparticles in the absence and presence of a microbial lipase and protease was determined. Trilaurin (TG12), trimyristin (TG14), tripalmitin (TG16), and tristearin (TG18) were used as lipid excipients to produce solid lipid microparticles.

Results

In the presence of lipase, the rate of drug release from different lipid particles was in the order of TG14 > TG16 > TG18, which is the same rank order as the lipid degradation rate. A reverse rank order was found for the protection of desmopressin from enzymatic degradation due to spatial separation of desmopressin from the protease. TG12 accelerated the release of desmopressin from all lipid particles when added as either drug-free microparticles to the lipolysis medium or incorporated in TG16 particles. Additionally, TG12 particles protected desmopressin from degradation when present in the lipolysis medium with the other lipid microparticles.

Conclusions

TG12 is a very interesting lipid for oral lipid formulations containing peptides and proteins as it alters release and degradation of the incorporated desmopressin. The present study demonstrates the possibility of bio-relevant in vitro evaluation of lipid-based solid particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm. 2006;327(1–2):153–9.

    PubMed  CAS  Google Scholar 

  2. Lowe PJ, Temple CS. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol. 1994;46(7):547–52.

    Article  PubMed  CAS  Google Scholar 

  3. Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP. Nanocapsules as carriers for oral peptide delivery. J Control Release. 1990;13(2–3):233–9.

    Article  Google Scholar 

  4. Muranishi S. Modification of intestinal absorption of drugs by lipoidal adjuvants. Pharm Res. 1985;2(3):108–18.

    Article  PubMed  CAS  Google Scholar 

  5. Charman WN, Porter CJH, Mithani S, Dressman JB. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.

    Article  PubMed  CAS  Google Scholar 

  6. Garcia-Fuentes M, Prego C, Torres D, Alonso MJ. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci. 2005;25(1):133–43.

    Article  PubMed  CAS  Google Scholar 

  7. Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomed. 2007;2(4):743–9.

    CAS  Google Scholar 

  8. Salmaso S, Bersani S, Elvassore N, Bertucco A, Caliceti P. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation. Int J Pharm. 2009;379(1):51–8.

    Article  PubMed  CAS  Google Scholar 

  9. Christophersen PC, Zhang L, Yang M, Nielsen HM, Müllertz A, Mu H. Solid lipid particles for oral delivery of peptide and protein drugs I - Elucidating the release mechanism of lysozyme during lipolysis. Eur J Pharm Biopharm. 2013;85(3):473–80.

    Article  PubMed  CAS  Google Scholar 

  10. Langguth P, Bohner V, Heizmann J, Merkle HP, Wolffram S, Amidon GL, et al. The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release. 1997;46(1–2):39–57.

    Article  CAS  Google Scholar 

  11. Lee VHL, Yamamoto A. Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev. 1989;4(2):171–207.

    Article  Google Scholar 

  12. Matsui K, Kimura T, Ota K, Iitake K, Shoji M, Inoue M, et al. Resistance of 1-Deamino [8-D-Argininei]-Vasopressin to in vitro degradation as compared with arginine vasopressin. Endocrinol Jpn. 1985;32(4):547–57.

    Article  PubMed  CAS  Google Scholar 

  13. Fredholt K, Østergaard J, Savolainen J, Friis GJ. a-Chymotrypsin-catalyzed degradation of desmopressin (dDAVP): influence of pH, concentration and various cyclodextrins. Int J Pharm. 1999;178(2):223–9.

    Article  PubMed  CAS  Google Scholar 

  14. Reithmeier H, Herrmann J, Göpferich A. Lipid microparticles as a parenteral controlled release device for peptides. J Control Release. 2001;73(2–3):339–50.

    Article  PubMed  CAS  Google Scholar 

  15. Larsen AT, Sassene P, Müllertz A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int J Pharm. 2011;417(1–2):245–55.

    Article  PubMed  CAS  Google Scholar 

  16. Williams HD, Sassene P, Kleberg K, Bakala-N’Goma JC, Calderone M, Jannin V, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80.

    Article  PubMed  CAS  Google Scholar 

  17. Aloulou A, Puccinelli D, de Caro A, Leblond Y, Carrière F. A comparative study on two fungal lipases from Thermomyces lanuginosus and Yarrowia lipolytica shows the combined effects of detergents and pH on lipase adsorption and activity. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids. 2007;1771(12):1446–56.

    Article  CAS  Google Scholar 

  18. Srividhya J, Schnell S. Why substrate depletion has apparent first-order kinetics in enzymatic digestion. Comput Biol Chem. 2006;30(3):209–14.

    Article  PubMed  CAS  Google Scholar 

  19. Schwab M, McGoverin CM, Gordon KC, Winter G, Rades T, Myschik J, et al. Studies on the lipase-induced degradation of lipid-based drug delivery systems. Part II - Investigations on the mechanisms leading to collapse of the lipid structure. Eur J Pharm Biopharm. 2013;84(3):456–63.

    Article  PubMed  CAS  Google Scholar 

  20. Kellens M, Meeussen W, Gehrke R, Reynaers H. Synchrotron radiation investigations of the polymorphic transitions of saturated monoacid triglycerides. Part 1: tripalmitin and tristearin. Chem Phys Lipids. 1991;58(1GÇô2):131–44.

    Article  CAS  Google Scholar 

  21. Kellens M, Meeussen W, Hammersley A, Reynaers H. Synchrotron radiation investigations of the polymorphic transitions in saturated monoacid triglycerides. Part 2: polymorphism study of a 50:50 mixture of tripalmitin and tristearin during crystallization and melting. Chem Phys Lipids. 1991;58(1–2):145–58.

    Article  CAS  Google Scholar 

  22. Lundin PDP, Bojrup M, Ljusberg-Wahren H, Weström BR, Lundin S. Enhancing effects of monohexanoin and two other medium-chain glyceride vehicles on intestinal absorption of desmopressin (dDAVP). J Pharm Exp Ther. 1997;282(2):585–90.

    CAS  Google Scholar 

  23. Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215–24.

    Article  PubMed  CAS  Google Scholar 

  24. Small DM. A classification of biologic lipids based upon their interaction in aqueous systems. J Am Oil Chem Soc. 1968;45(3):108–19.

    Article  PubMed  CAS  Google Scholar 

  25. Koynova R, Tenchov B. Interactions of surfactants and fatty acids with lipids. Curr Opin Colloid Interface Sci. 2001;6(3):277–86.

    Article  CAS  Google Scholar 

  26. Tilley AJ, Dong YD, Chong JYT, Hanley T, Kirby N, Drummond CJ, et al. Transfer of lipid between triglyceride dispersions and lyotropic liquid crystal nanostructured particles using time-resolved SAXS. Soft Matter. 2012;8(20):5696–708.

    Article  CAS  Google Scholar 

  27. Aungst BJ. Intestinal permeation enhancers. J Pharm Sci. 2000;89(4):429–42.

    Article  PubMed  CAS  Google Scholar 

  28. Lindmark T, Nikkilä T, Artursson P. Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther. 1995;275(2):958–64.

    PubMed  CAS  Google Scholar 

  29. Jantratid E, Janssen N, Reppas C, Dressman J. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Dorthe Ørbæk (University of Copenhagen, Denmark) is acknowledged for her technical assistance with SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christophersen, P.C., Zhang, L., Müllertz, A. et al. Solid Lipid Particles for Oral Delivery of Peptide and Protein Drugs II – The Digestion of Trilaurin Protects Desmopressin from Proteolytic Degradation. Pharm Res 31, 2420–2428 (2014). https://doi.org/10.1007/s11095-014-1337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1337-z

KEY WORDS

Navigation