Skip to main content
Log in

Chitosan-Based Polyelectrolyte Complexes as Potential Nanoparticulate Carriers: Physicochemical and Biological Characterization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the effect of polyelectrolytes on the formation and physicochemical properties of chitosan nanoparticles (CS-NPs) used for the delivery of an anticancer drug, doxorubicin (DOX).

Method

Three DOX-loaded CS-NPs were formulated with tripolyphosphate (CS-TP/DOX NPs), dextran sulfate (CS-DS/DOX NPs), and hyaluronic acid (CS-HA/DOX NPs) by using ionotropic gelation or complex coacervation.

Results

CS-TP/DOX NPs were the smallest, with an average size of ~100 nm and a narrow size distribution, while CS-DS/DOX and CS-HA/DOX NPs were ~200 nm in size. Transmission electron microscopy clearly showed a spherical shape for all the NPs. The strong binding affinity of DOX for the multiple sulfate groups in DS resulted in a sustained release profile from CS-DS/DOX NPs at pH 7.4, while CS-HA/DOX NPs exhibited faster DOX release. This trend was also present under acidic conditions, where release of DOX was significantly augmented because of polymer protonation. Compared to CS-TP/DOX or CS-DS/DOX NPs, CS-HA/DOX NPs showed superior cellular uptake and cytotoxicity in MCF-7 and A-549 cells, because of their ability to undergo CD44-mediated endocytosis. Pharmacokinetic studies clearly showed that all CS-NPs tested significantly improved DOX plasma circulation time and decreased its elimination rate constant. Consistent with the in vitro release data, CS-DS/DOX NPs exhibited a relatively better DOX plasma profile and enhanced blood circulation, compared to CS-HA/DOX or CS-TP/DOX NPs. Overall, these results demonstrated how NP design can influence their function.

Conclusions

Taken together, CS-based polyelectrolyte complexes could provide a versatile delivery system with enormous potential in the pharmaceutical and biomedical sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–61.

    Article  CAS  PubMed  Google Scholar 

  2. Lankalapalli S, Kolapalli VRM. Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci. 2009;71:481–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bhattarai N, Gunn JJ, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99.

    Article  CAS  PubMed  Google Scholar 

  4. Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 2010;62:28–41.

    Article  CAS  PubMed  Google Scholar 

  5. Malhotra A, Zhang X, Turkson J, Santra S. Buffer-stable chitosan–polyglutamic acid hybrid nanoparticles for biomedical applications. Macromol Biosci. 2013;13:603–13.

    Article  CAS  PubMed  Google Scholar 

  6. Anitha A, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications. Carbohydr Polym. 2011;83:66–73.

    Article  CAS  Google Scholar 

  7. Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier sys-tematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces. 2007;59:24–34.

    Article  CAS  PubMed  Google Scholar 

  8. Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb A. Chitosan chemistry and pharmaceutical perspectives. J Chem Rev. 2004;104:6017–84.

    Article  Google Scholar 

  9. Jonassen H, Kjøniksen AL, Hiorth M. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules. 2012;13:3747–56.

    Article  CAS  PubMed  Google Scholar 

  10. Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharm Res. 2011;34:583–92.

    Article  CAS  PubMed  Google Scholar 

  11. He CB, Hu YP, Yin LC, Tang C, Yin CH. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–66.

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–62.

    Article  CAS  PubMed  Google Scholar 

  13. Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol Pharm. 2012;9:2856–62.

    Article  CAS  PubMed  Google Scholar 

  14. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.

    Article  CAS  PubMed  Google Scholar 

  15. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B: Biointerfaces. 2012;90:21–7.

    Article  CAS  PubMed  Google Scholar 

  16. Nasti A, Zaki NM, Leonardis PD, Ungphaiboon S, Sansongsak P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res. 2009;26:1918–30.

    Article  CAS  PubMed  Google Scholar 

  17. Yousefpour P, Atyabi F, Farahani EV, Sakhtianchi R, Dinarvand R. Polyanionic carbohydrate doxorubicin–dextran nanocomplex as a delivery system for anticancer drugs: in vitro analysis and evaluations. Int J Nanomedicine. 2011;6:1487–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Almond A. Hyaluronan. Cell Mol Life Sci. 2007;64:1591–6.

    Article  CAS  PubMed  Google Scholar 

  19. Duceppe N, Tabrizian M. Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials. 2009;30:2625–31.

    Article  CAS  PubMed  Google Scholar 

  20. Qadi SA, Meda MA, Zaghloul EM, Taboada P, López CR. Chitosan–hyaluronic acid nanoparticles for gene silencing: the role of hyaluronic acid on the nanoparticles’ formation and activity. Colloids Surf B: Biointerfaces. 2013;103:615–23.

    Article  Google Scholar 

  21. Haidar ZS, Hamdy RC, Tabrizian M. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials. 2008;29:1207–18.

    Article  CAS  PubMed  Google Scholar 

  22. Bhaskar K, Ravichandiran V, Venkateswarlu V, Rao YM. Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies. Lipids Health Dis. 2009;8:6–18.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ramasamy T, Ruttala HB, Shanmugam S, Umadevi SK. Eudragit-coated aceclofenac-loaded pectin microspheres in chronopharmacological treatment of rheumatoid arthritis. Drug Deliv. 2013;20:65–77.

    Article  CAS  PubMed  Google Scholar 

  24. Pedroni VI, Schulz PC, Gschaider ME, Andreucetti N. Chitosan structure in aqueous solution. Colloid Polym Sci. 2003;282:100–11.

    Article  CAS  Google Scholar 

  25. Huang Y, Lapitsky Y. Salt assisted mechanistic analysis of chitosan/tripolyphosphate micro- and nanogel formation. Biomacromolecules. 2012;13:3868–76.

    Article  CAS  PubMed  Google Scholar 

  26. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B: Biointerfaces. 2005;44:65–73.

    Article  CAS  PubMed  Google Scholar 

  27. Oyarzun-Ampuero FA, Brea J, Loza MI, Torres D, Alonso MJ. Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm. 2009;381:122–9.

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Mohanraj VJ, Wang F, Benson HAE. Designing chitosan–dextran sulfate nanoparticles using charge ratios. AAPS PharmSciTech. 2007;8:E98.

    Article  PubMed  Google Scholar 

  29. Kayal S, Ramanujan RV. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug deliver. Mater Sci Eng C. 2010;30:484–90.

    Article  CAS  Google Scholar 

  30. Barret PC, Gustavsson T, Markovitsi D, Manet I, Monti S. Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy. Phys Chem Chem Phys. 2013;15:2937–45.

    Article  Google Scholar 

  31. Kim JO, Kabanov AV, Bronich TK. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release. 2009;138:197–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nogueira DR, Tavano L, Mitjans M, Pérez L, Infante MR, Vinardell MP. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials. 2013;34:2758–72.

    Article  CAS  PubMed  Google Scholar 

  33. Subedi RK, Kang KW, Choi HK. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37:508–13.

    Article  CAS  PubMed  Google Scholar 

  34. Lin LY, Lee NS, Zhu J, Nyström AM, Pochan DJ, Dorshow RB, et al. Tuning core vs. shell dimensions to adjust the performance of nanoscopic containers for the loading and release of doxorubicin. J Control Release. 2011;152:37–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Morrisa GA, Castile J, Smith A, Adams GG, Harding SE. The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)–chitosan nanoparticles. Carbohydr Polym. 2011;84:1430–4.

    Article  Google Scholar 

  36. Parajó Y, Angelo I, Welle A, Fuente MG, Alonso MJ. Hyaluronic acid/chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv. 2010;17:596–604.

    Article  PubMed  Google Scholar 

  37. Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Lee JH, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials. 2011;32:7181–90.

    Article  CAS  PubMed  Google Scholar 

  38. Lee HJ, Lee K, Park TG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug Chem. 2008;19:1319–25.

    Article  CAS  PubMed  Google Scholar 

  39. Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials. 2010;31:2882–92.

    Article  CAS  PubMed  Google Scholar 

  40. De la Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid–chitosan nanoparticles for ocular gene therapy. Investig Ophthalmol Vis Sci. 2008;49:2016–24.

    Article  Google Scholar 

  41. Arpicco S, Rosa GD, Fattal E. Lipid-based nanovectors for targeting of CD44-overexpressing tumor cells. J Drug Deliv. 2013:860780.

  42. Lu HD, Zhao HQ, Wang K, Lv LL. Novel hyaluronic acid–chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int J Pharm. 2011;420:358–65.

    Article  CAS  PubMed  Google Scholar 

  43. Lee HJ, Park WH, Lee MG. Pharmacokinetic and tissue distribution changes of adriamycin and adriamycinol after intravenous administration of adriamycin to alloxan-induced diabetes mellitus rats. Res Commun Mol Pathol Pharmacol. 1995;89:165–78.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (No. 2012R1A2A2A02044997 and No. 2012R1A1A1039059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Gon Choi, Chul Soon Yong or Jong Oh Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1569 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasamy, T., Tran, T.H., Cho, H.J. et al. Chitosan-Based Polyelectrolyte Complexes as Potential Nanoparticulate Carriers: Physicochemical and Biological Characterization. Pharm Res 31, 1302–1314 (2014). https://doi.org/10.1007/s11095-013-1251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1251-9

KEY WORDS

Navigation