Skip to main content

Advertisement

Log in

Multifunctional Tumor-Targeting Nanocarriers Based on Hyaluronic Acid-Mediated and pH-Sensitive Properties for Efficient Delivery of Docetaxel

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The objective of this work was to develop a multifunctional tumor-targeting nanocarrier based on the mechanism of CD44-mediated endocytosis and pH-induced drug release to improve the therapeutic efficacy of docetaxel (DTX).

Methods

Hyaluronic acid-coated docetaxel-loaded cholesteryl hemisuccinate vesicles (HA-CHEMS vesicles) were prepared. The physiochemical properties and pH-dependent drug release of HA-CHEMS vesicles were evaluated. The HA-CHEMS vesicles were investigated for CD44-mediated internalization and in vitro cell viability using MCF-7,A549 and L929 cells.In addition,tissue distribution as well as antitumor efficacy was also evaluated in MCF-7 tumor-bearing mouse model.

Results

The particle size and zeta potential of HA-CHEMS vesicles were 131.4 ± 6.2 nm and −13.3 ± 0.04 mV,respectively. The in vitro drug release results demonstrated a pH-responsive drug release under different pH conditions. In vitro cell viability tests suggested that the encapsulation of DTX in HA-CHEMS vesicles led to more than 51.6-fold and 46.3-fold improved growth inhibition in MCF-7 and A549 cell lines,respectively compared to Taxotere®. From the cell uptake studies,the coumarin 6-loaded HA-CHEMS vesicles enhanced intracellular fluorescent intensity in the CD44-overexpressing cell line (MCF-7). Biodistribution studies revealed selective accumulation of HA-CHEMS vesicles in the MCF-7 bearing BalB/c nude mice as a result of passive accumulation and active targeting (CD44-mediated endocytosis). Compared to Taxotere®,HA-CHEMS vesicles exhibited higher antitumor activity by reducing tumor volume (P < 0.05) and drug toxicity,demonstrating the success of the multifunctional targeting delivery.

Conclusions

This work corresponds to the preparation of a multifunctional tumor-targeted delivery system. Our investigation shows that hyaluronan-bearing docetaxel-loaded cholesteryl hemisuccinate vesicles (HA-CHEMS vesicles) is a highly promising therapeutic system,leading to tumor regression after intravenous administration without visible toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A549:

Non small-cell lung cancer

C6:

coumarin-6

CHEMS:

cholesteryl hemisuccinate

CLSM:

confocal laser scanning microscopy

DDAB:

dimethyl dioctadecyl ammonium bromide

DL:

drug loading

DLS:

dynamic light scattering

DMEM:

dulbecco’s modified Eagle’s medium

DTX:

docetaxel

EPR:

enhanced permeability and retention

EE:

encapsulation efficiency

HA:

hyaluronic acid hyaluronan

IC50 :

the growth inhibitory concentration for 50% of the cell population

L929:

mice fibroblasts

LYVE-1:

the lymphatic vessel endothelial HA receptor-1

MCF-7:

human breast cancer cells

MTT:

3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide

MW:

molecular weight

PBS:

phosphate buffered saline

PI:

propidium iodide

RHMM:

receptor for hyaluronate-mediated motility

RPMI:

roswell park memorial institute

TEM:

transmission electron microscopy

TIR:

tumor inhibition rate

References

  1. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev. 2001;46:149–68.

    Article  CAS  PubMed  Google Scholar 

  2. Allenand TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.

    Article  Google Scholar 

  3. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11:812–8.

    Article  CAS  PubMed  Google Scholar 

  4. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  5. Xiang G, Wu J, Lu Y, Liu Z, Lee RJ. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm. 2008;356:29–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hatakeyama H, Akita H, Maruyama K, Suhara T, Harashima H. Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm. 2004;281:25–33.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Youn P, Furgeson DY. Thermo-targeted drug delivery of geldanamycin to hyperthermic tumor margins with diblock elastin-based biopolymers. J Control Release. 2011;155:175–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Xu H, Deng Y, Chen D, Hong W, Lu Y, Dong X. Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J Control Release. 2008;130:238–45.

    Article  CAS  PubMed  Google Scholar 

  9. Shen M, Huang Y, Han L, Qin J, Fang X, Wang J, et al. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J Control Release. 2012;161:884–92.

    Article  CAS  PubMed  Google Scholar 

  10. Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials. 2010;31:106–14.

    Article  CAS  PubMed  Google Scholar 

  11. Robert L, Robert AM, Renard G. Biological effects of hyaluronan in connective tissues, eye, skin, venous wall. Role in aging. Pathol Biol. 2010;58:187–98.

    Article  CAS  PubMed  Google Scholar 

  12. Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85:469–89.

    Article  Google Scholar 

  13. Yin D-S, Z-q G, W-y Y, C-x L, Y-j Y. Inhibition of tumor metastasis in vivo by combination of paclitaxel and hyaluronic acid. Cancer Lett. 2006;243:71–9.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421:160–9.

    Article  CAS  PubMed  Google Scholar 

  15. Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer. 2010;46:1271–7.

    Article  CAS  PubMed  Google Scholar 

  16. Journo-Gershfeld G, Kapp D, Shamay Y, Kopeček J, David A. Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm Res. 2012;29:1121–33.

    Article  CAS  PubMed  Google Scholar 

  17. Xin D, Wang Y, Xiang J. The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm Res. 2010;27:380–9.

    Article  CAS  PubMed  Google Scholar 

  18. Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials. 2010;31:2882–92.

    Article  CAS  PubMed  Google Scholar 

  19. Raviña M, Cubillo E, Olmeda D, Novoa-Carballal R, Fernandez-Megia E, Riguera R, et al. Hyaluronic acid/chitosan-g-Poly(ethylene glycol) nanoparticles for gene therapy: an application for pDNA and siRNA delivery. Pharm Res. 2010;27:2544–55.

    Article  PubMed  Google Scholar 

  20. Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials. 2010;31:2882–92.

    Article  CAS  PubMed  Google Scholar 

  21. Carafa M, Di Marzio L, Marianecci C, Cinque B, Lucania G, Kajiwara K, et al. Designing novel pH-sensitive non-phospholipid vesicle: characterization and cell interaction. Eur J Pharm Sci. 2006;28:385–93.

    Article  CAS  PubMed  Google Scholar 

  22. Hafezand IM, Cullis PR. Cholesteryl hemisuccinate exhibits pH sensitive polymorphic phase behavior. Biochim Biophys Acta (BBA) Biomembr. 2000;1463:107–14.

    Article  Google Scholar 

  23. Simões S, Moreira JN, Fonseca C, Düzgüneş N, Pedroso de Lima MC. On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev. 2004;56:947–65.

    Article  PubMed  Google Scholar 

  24. Naik S, Patel D, Chuttani K, Mishra AK, Misra A. In vitro mechanistic study of cell death and in vivo performance evaluation of RGD grafted PEGylated docetaxel liposomes in breast cancer. Nanomedicine Nanotechnol Biol Med. 2012;8:951–62.

    Article  CAS  Google Scholar 

  25. Morikawa Y, Koike H, Sekine Y, Matsui H, Shibata Y, Ito K, et al. Rapamycin enhances docetaxel-induced cytotoxicity in a androgen-independent prostate cancer xenograft model by survivin downregulation. Biochem Biophys Res Commun. 2012;419:584–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kintzel PE, Michaud LB, Lange MK. Docetaxel-associated epiphora. Pharmacother J Hum Pharmacol Drug Ther. 2006;26:853–67.

    Article  CAS  Google Scholar 

  27. Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011;63:623–39.

    Article  PubMed  Google Scholar 

  28. Baker J, Ajani J, Scotté F, Winther D, Martin M, Aapro MS, et al. Docetaxel-related side effects and their management. Eur J Oncol Nurs. 2009;13:49–59.

    Article  PubMed  Google Scholar 

  29. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem. 2004;16:122–30.

    Article  Google Scholar 

  30. Muthu MS, Rawat MK, Mishra A, Singh S. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine Nanotechnol Biol Med. 2009;5:323–33.

    Article  CAS  Google Scholar 

  31. Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm. 2009;379:131–8.

    Article  CAS  PubMed  Google Scholar 

  32. Carafa M, Di Marzio L, Marianecci C, Cinque B, Lucania G, Kajiwara K, et al. Designing novel pH-sensitive non-phospholipid vesicle: characterization and cell interaction. Eur J Pharm Sci. 2006;28:385–93.

    Article  CAS  PubMed  Google Scholar 

  33. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Q, Wu J, Tan T, Zhang L, Chen D, Tian W. Preparation, properties and cytotoxicity evaluation of a biodegradable polyester elastomer composite. Polym Degrad Stab. 2009;94:1427–35.

    Article  CAS  Google Scholar 

  35. Ungaro F, Conte C, Ostacolo L, Maglio G, Barbieri A, Arra C, et al. Core-shell biodegradable nanoassemblies for the passive targeting of docetaxel: features, antiproliferative activity and in vivo toxicity. Nanomedicine Nanotechnol Biol Med. 2012;8:637–46.

    Article  CAS  Google Scholar 

  36. Peerand D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer. 2004;108:780–9.

    Article  Google Scholar 

  37. Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit R. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010;31:7106–14.

    Article  CAS  PubMed  Google Scholar 

  38. Plattand VM, Szoka FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5:474–86.

    Article  Google Scholar 

  39. Zhou B, Weigel JA, Fauss L, Weigel PH. Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem. 2000;275:37733–41.

    Article  CAS  PubMed  Google Scholar 

  40. Cho H-J, Yoon I-S, Yoon HY, Koo H, Jin Y-J, Ko S-H, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials. 2012;33:1190–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was financially supported by the National Natural Science Foundation of China (NSFC,No.81273447), and Heibei Natural Science Foundation of China (HENSF, C2011139007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisan Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., Chen, F., Qi, H. et al. Multifunctional Tumor-Targeting Nanocarriers Based on Hyaluronic Acid-Mediated and pH-Sensitive Properties for Efficient Delivery of Docetaxel. Pharm Res 31, 1032–1045 (2014). https://doi.org/10.1007/s11095-013-1225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1225-y

KEY WORDS

Navigation