Skip to main content

Advertisement

Log in

The Effect of Glutathione as Chain Transfer Agent in PNIPAAm-Based Thermo-responsive Hydrogels for Controlled Release of Proteins

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To control degradation and protein release using thermo-responsive hydrogels for localized delivery of anti-angiogenic proteins.

Methods

Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and crosslinked with poly(ethylene glycol)-co-(L-lactic acid) diacrylate (Acry-PLLA-b-PEG-b-PLLA-Acry) were synthesized via free radical polymerization in the presence of glutathione, a chain transfer agent (CTA) added to modulate their degradation and release properties. Immunoglobulin G (IgG) and the recombinant proteins Avastin® and Lucentis® were encapsulated in these hydrogels and their release was studied.

Results

The encapsulation efficiency of IgG was high (75–87%) and decreased with CTA concentration. The transition temperature of these hydrogels was below physiological temperature, which is important for minimally invasive therapies involving these materials. The toxicity from unreacted monomers and free radical initiators was eliminated with a minimum of three buffer extractions. Addition of CTA accelerated degradation and resulted in complete protein release. Glutathione caused the degradation products to become solubilized even at 37°C. Hydrogels prepared without glutathione did not disintegrate nor released protein completely after 3 weeks at 37°C. PEGylation of IgG postponed the burst release effect. Avastin® and Lucentis® released from degraded hydrogels retained their biological activity.

Conclusions

These systems offer a promising platform for the localized delivery of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4

Similar content being viewed by others

Abbreviations

Acry-PEG-SVA:

Acryloyl-(ethylene glycol)-succinimidyl valerate

Acry-PLLA-b-PEG-b-PLLA-Acry:

Poly(ethylene glycol)-co-(L-lactic acid) diacrylate

AMD:

Age related macular degeneration

APS:

Ammonium persulfate

BME:

β-mercaptoethanol

CTA:

Chain transfer agent

DCM:

Dichloromethane

EDTA:

Ethylenediaminetetraacetic acid

IgG:

Immunoglobulin G

LCST:

Lower critical solution temperature

NIPAAm:

N-isopropylacrylamide

PEG:

Poly(ethylene glycol)

PLLA:

Poly(L-lactic acid)

PNIPAAm:

Poly(N-isopropylacrylamide)

TEA:

Triethylamine

TEMED:

N,N,N′,N′-tetramethylethylenediamine

VPTT:

Volume phase transition temperature

REFERENCES

  1. Linand CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26:631–43.

    Article  Google Scholar 

  2. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33:448–77.

    Article  CAS  Google Scholar 

  3. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  PubMed  Google Scholar 

  4. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345–60.

    Article  CAS  Google Scholar 

  5. Sawhney AS, Pathak CP, Hubbell JA. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules. 1993;26:581–7.

    Article  CAS  Google Scholar 

  6. Westand JL, Hubbell JA. Photopolymerized hydrogel materials for drug-delivery applications. React Polym. 1995;25:139–47.

    Article  Google Scholar 

  7. Kloudaand L, Mikos AG. Thermo-responsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68:34–45.

    Article  Google Scholar 

  8. Ruel-Gariepyand E, Leroux JC. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58:409–26.

    Article  Google Scholar 

  9. Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2002;54:37–51.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release. 1987;6:297–305.

    Article  CAS  Google Scholar 

  11. Donati G. Emerging therapies for neovascular age-related macular degeneration: state of the art. Ophthalmologica. 2007;221:366–77.

    Article  CAS  PubMed  Google Scholar 

  12. Fung AE, Lalwani GA, Rosenfeld PJ, Dubovy SR, Michels S, Feuer WJ, et al. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol. 2007;143:566–83.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenfeld PJ. Intravitreal Avastin: the low cost alternative to lucentis? Am J Ophthalmol. 2006;142:141–3.

    Article  CAS  PubMed  Google Scholar 

  14. Bhatnagar P, Spaide Richard F, Takahashi Beatriz S, Peragallo Jason H, Freund KB, Klancnik James Jr M, et al. Ranibizumab for treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina. 2007;27:846–50.

    Article  PubMed  Google Scholar 

  15. Turturro SB, Guthrie MJ, Appel AA, Drapala PW, Brey EM, Pérez-Luna VH, et al. The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials. 2011;32:3620–6.

    Article  CAS  PubMed  Google Scholar 

  16. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009;11:2685–700.

    Article  CAS  PubMed  Google Scholar 

  17. Bertrand N, Fleischer JG, Wasan KM, Leroux J-C. Pharmacokinetics and biodistribution of N-isopropylacrylamide copolymers for the design of pH-sensitive liposomes. Biomaterials. 2009;30:2598–605.

    Article  CAS  PubMed  Google Scholar 

  18. Chiu Y-C, Larson JC, Perez-Luna VH, Brey EM. Formation of microchannels in poly(ethylene glycol) hydrogels by selective degradation of patterned microstructures. Chem Mater. 2009;21:1677–82.

    Article  CAS  Google Scholar 

  19. Drapala PW, Brey EM, Mieler WF, Venerus DC, Derwent JJK, Pérez-Luna VH. Role of thermo-responsiveness and poly(ethylene glycol) diacrylate cross-link density on protein release from poly(N-isopropylacrylamide) hydrogels. J Biomater Sci Polym Ed. 2011;22:59–75.

    Article  CAS  Google Scholar 

  20. Schild HG. Poly (N-isopropylacrylamide) - experiment, theory and application. Prog Polym Sci. 1992;17:163–249.

    Article  CAS  Google Scholar 

  21. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, et al. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules. 1998;31:6099–105.

    Article  CAS  Google Scholar 

  22. Costa R, Carneiro A, Rocha A, Pirraco A, Falcao M, Vasques L, et al. Bevacizumab and ranibizumab on microvascular endothelial cells: a comparative study. J Cell Biochem. 2009;108:1410–7.

    Article  CAS  PubMed  Google Scholar 

  23. Klettnerand A, Roider J. Comparison of bevacizumab, ranibizumab, and pegaptanib in vitro: efficiency and possible additional pathways. Investig Ophthalmol Vis Sci. 2008;49:4523–7.

    Article  Google Scholar 

  24. Kricheldorf HR, Nuyken O, Swift G. Handbook of polymer synthesis. New York: Marcel Dekker; 2005.

    Google Scholar 

  25. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.

    Google Scholar 

  26. Mason MN, Metters AT, Bowman CN, Anseth KS. Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules. 2001;34:4630–5.

    Article  CAS  Google Scholar 

  27. Linand CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58:1379–408.

    Article  Google Scholar 

  28. Nolan CM, Reyes CD, Debord JD, Garcia AJ, Lyon LA. Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles. Biomacromolecules. 2005;6:2032–9.

    Article  CAS  PubMed  Google Scholar 

  29. Furyk S, Zhang YJ, Ortiz-Acosta D, Cremer PS, Bergbreiter DE. Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide). J Polym Sci A Polym Chem. 2006;44:1492–501.

    Article  CAS  Google Scholar 

  30. Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem. 2003;51:4504–26.

    Article  CAS  PubMed  Google Scholar 

  31. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211–8.

    Article  CAS  PubMed  Google Scholar 

  32. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular-weights after intravenous administration to mice. J Pharm Sci. 1994;83:601–6.

    Article  CAS  PubMed  Google Scholar 

  33. Metters AT, Anseth KS, Bowman CN. A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks: incorporating network non-idealities. J Phys Chem B. 2001;105:8069–76.

    Article  CAS  Google Scholar 

  34. Metters AT, Anseth KS, Bowman CN. Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer. 2000;41:3993–4004.

    Article  CAS  Google Scholar 

  35. Metters AT, Bowman CN, Anseth KS. A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J Phys Chem B. 2000;104:7043–9.

    Article  CAS  Google Scholar 

  36. Fipulaand D, Zhao H. Releasable PEGylation of proteins with customized linkers. Adv Drug Deliv Rev. 2008;60:29–49.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We would like to thank Chen Zhang and Michael Turturro for help with PEGylation and radiolabeling of IgG. This research was made possible through the funding provided by The Lincy Foundation, The Macula Foundation and the Veterans Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Pérez-Luna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drapala, P.W., Jiang, B., Chiu, YC. et al. The Effect of Glutathione as Chain Transfer Agent in PNIPAAm-Based Thermo-responsive Hydrogels for Controlled Release of Proteins. Pharm Res 31, 742–753 (2014). https://doi.org/10.1007/s11095-013-1195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1195-0

KEY WORDS

Navigation