Skip to main content

Advertisement

Log in

Transforming Lipid-Based Oral Drug Delivery Systems into Solid Dosage Forms: An Overview of Solid Carriers, Physicochemical Properties, and Biopharmaceutical Performance

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hauss DJ. Oral lipid-based formulations: enhancing the bioavailability of poorly water-soluble drugs. New York: Informa Healthcare USA; 2007.

    Google Scholar 

  2. Fatouros DG, Karpf DM, Nielsen FS, Mullertz A. Clinical studies with oral lipid based formulations of poorly soluble compounds. Ther Clin Risk Manag. 2007;3(4):591–604.

    PubMed  CAS  Google Scholar 

  3. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–28.

    Article  CAS  Google Scholar 

  4. Kossena GA, Boyd BJ, Porter CJH, Charman WN. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. J Pharm Sci. 2003;92(3):634–48.

    Article  PubMed  CAS  Google Scholar 

  5. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  PubMed  CAS  Google Scholar 

  6. Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59(7):667–76.

    Article  PubMed  CAS  Google Scholar 

  7. Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev. 2008;60(6):734–46.

    Article  PubMed  CAS  Google Scholar 

  8. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 2000;11(Supplement 2):S93–8.

    Article  PubMed  CAS  Google Scholar 

  9. Williams HD, Sassene P, Kleberg K, Bakala-N’Goma J-C, Calderone M, Jannin V, et al.Towards the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80.

    Article  PubMed  CAS  Google Scholar 

  10. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96.

    Article  PubMed  CAS  Google Scholar 

  11. Wasan KM. Formulation and physiological and biopharmaceutical issues in the development of oral lipid-based drug delivery systems. Drug Dev Ind Pharm. 2001;27(4):267–76.

    Article  PubMed  CAS  Google Scholar 

  12. O’Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002;15(5):405–15.

    Article  PubMed  Google Scholar 

  13. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–87.

    Article  PubMed  CAS  Google Scholar 

  14. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.

    Article  PubMed  CAS  Google Scholar 

  15. Porter CJH, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–91.

    Article  PubMed  CAS  Google Scholar 

  16. Chakraborty S, Shukla D, Mishra B, Singh S. Lipid - an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  17. Chen Y, Chen J-M, Chen M, Gao S, Zhong Y-Q. Cubosomes as drug delivery system: recent advance. Acad J Sec Mil Med Univ. 2009;30(7):834–9.

    Google Scholar 

  18. Fricker G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H, et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27(8):1469–86.

    Article  PubMed  CAS  Google Scholar 

  19. Dollo G, Le Corre P, Guerin A, Chevanne F, Burgot JL, Leverge R. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. Eur J Pharm Sci. 2003;19(4):273–80.

    Article  PubMed  CAS  Google Scholar 

  20. Jang DJ, Jeong EJ, Lee HM, Kim BC, Lim SJ, Kim CK. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur J Pharm Sci. 2006;28(5):405–11.

    Article  PubMed  CAS  Google Scholar 

  21. Christensen KL, Pedersen GP, Kristensen HG. Physical stability of redispersible dry emulsions containing amorphous sucrose. Eur J Pharm Biopharm. 2002;53(2):147–53.

    Article  PubMed  CAS  Google Scholar 

  22. Marchaud D, Hughes S. Solid dosage forms from self-emulsifying lipidic formulations. Pharm Technol Eur. 2008;20(4):46–9.

    CAS  Google Scholar 

  23. Cole ET, Cade D, Benameur H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv Drug Deliv Rev. 2008;60(6):747–56.

    Article  PubMed  CAS  Google Scholar 

  24. Cannon JB. Oral solid dosage forms of lipid-based drug delivery systems. Am Pharm Rev. 2005;8(1):108–15.

    CAS  Google Scholar 

  25. Tang B, Cheng G, Gu J-C, Xu C-H. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13–14):606–12.

    Article  PubMed  CAS  Google Scholar 

  26. Shukla D, Chakraborty S, Singh S, Mishra B. Lipid-based oral multiparticulate formulations - advantages, technological advances and industrial applications. Expert Opin Drug Deliv. 2011;8(2):207–24.

    Article  PubMed  CAS  Google Scholar 

  27. Hentzschel CM, Sakmann A, Leopold CS. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev Ind Pharm. 2011;37(10):1200–7.

    Article  PubMed  CAS  Google Scholar 

  28. Nokhodchi A, Hentzschel CM, Leopold CS. Drug release from liquisolid systems: speed it up, slow it down. Expert Opin Drug Deliv. 2011;8(2):191–205.

    Article  PubMed  CAS  Google Scholar 

  29. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  PubMed  CAS  Google Scholar 

  30. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76.

    Article  PubMed  CAS  Google Scholar 

  31. Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63(10–11):901–8.

    Article  PubMed  CAS  Google Scholar 

  32. Richter A, Steiger-Trippi K. Research on the spray drying of emulsified medical preparations. 1. Pharm Acta Helv. 1961;36:322–37.

    PubMed  CAS  Google Scholar 

  33. Christensen KL, Pedersen GP, Kristensen HG. Preparation of redispersible dry emulsions by spray drying. Int J Pharm. 2001;212(2):187–94.

    Article  PubMed  CAS  Google Scholar 

  34. Hansen T, Holm P, Schultz K. Process characteristics and compaction of spray-dried emulsions containing a drug dissolved in lipid. Int J Pharm. 2004;287(1–2):55–66.

    Article  PubMed  CAS  Google Scholar 

  35. Soottitantawat A, Takayama K, Okamura K, Muranaka D, Yoshii H, Furuta T, et al. Microencapsulation of l-menthol by spray drying and its release characteristics. Innovative Food Sci Emerging Technol. 2005;6(2):163–70.

    Article  CAS  Google Scholar 

  36. Ge Z, Zhang X-x, Gan L, Gan Y. Redispersible, dry emulsion of lovastatin protects against intestinal metabolism and improves bioavailability. Acta Pharmacol Sin. 2008;29(8):990–7.

    Article  PubMed  CAS  Google Scholar 

  37. Hansen T, Holm P, Rohde M, Schultz K. In vivo evaluation of tablets and capsules containing spray-dried o/w-emulsions for oral delivery of poorly soluble drugs. Int J Pharm. 2005;293(1–2):203–11.

    Article  PubMed  CAS  Google Scholar 

  38. Simovic S, Barnes TJ, Tan A, Prestidge CA. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids. Nanoscale. 2012;4(4):1220–30.

    Article  PubMed  CAS  Google Scholar 

  39. Tan A, Simovic S, Davey AK, Rades T, Prestidge CA. Silica-lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs. J Control Release. 2009;134(1):62–70.

    Article  PubMed  CAS  Google Scholar 

  40. Tan A, Martin A, Nguyen T-H, Boyd BJ, Prestidge CA. Hybrid nanomaterials that mimic the food effect: controlling enzymatic digestion for enhanced oral drug absorption. Angew Chem Int Ed Engl. 2012;51(22):5475–9.

    Article  PubMed  CAS  Google Scholar 

  41. Simovic S, Heard P, Hui H, Song Y, Peddie F, Davey AK, et al. Dry hybrid lipid-silica microcapsules engineered from submicron lipid droplets and nanoparticles as a novel delivery system for poorly soluble drugs. Mol Pharm. 2009;6(3):861–72.

    Article  PubMed  CAS  Google Scholar 

  42. Simovic S, Hui H, Song Y, Davey AK, Rades T, Prestidge CA. An oral delivery system for indomethicin engineered from cationic lipid emulsions and silica nanoparticles. J Control Release. 2010;143(3):367–73.

    Article  PubMed  CAS  Google Scholar 

  43. Bremmell KE, Tan A, Martin A, Prestidge CA. Tableting lipid-based formulations for oral drug delivery: a case study with silica nanoparticle-lipid-mannitol hybrid microparticles. J Pharm Sci. 2013;102(2):684–93.

    Article  PubMed  CAS  Google Scholar 

  44. Nekkanti V, Karatgi P, Prabhu R, Pillai R. Solid self-microemulsifying formulation for candesartan cilexetil. AAPS PharmSciTech. 2010;11(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  45. Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P. Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J Food Sci. 2003;68(7):2256–62.

    Article  CAS  Google Scholar 

  46. Li L, Yi T, Lam CW-K. Effects of spray-drying and choice of solid carriers on concentrations of Labrasol® and Transcutol® in solid self-microemulsifying drug delivery systems (SMEDDS). Molecules. 2013;18(1):545–60.

    Article  PubMed  CAS  Google Scholar 

  47. Payne NI, Timmins P, Ambrose CV, Ward MD, Rigway F. Proliposomes: a novel solution to an old problem. J Pharm Sci. 1986;75(4):325–9.

    Article  PubMed  CAS  Google Scholar 

  48. Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 2000;206(1–2):110–22.

    PubMed  CAS  Google Scholar 

  49. Janga KY, Jukanti R, Velpula A, Sunkavalli S, Bandari S, Kandadi P, et al. Bioavailability enhancement of zaleplon via proliposomes: role of surface charge. Eur J Pharm Biopharm. 2012;80(2):347–57.

    Article  PubMed  CAS  Google Scholar 

  50. Crowe LM, Womersley C, Crowe JH, Reid D, Appel L, Rudolph A. Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochim Biophys Acta Biomembranes. 1986;861(C):131–40.

    CAS  Google Scholar 

  51. Hoekstra FA, Wolkers WF, Buitink J, Golovina EA, Crowe JH, Crowe LM. Membrane stabilization in the dry state. Comp Biochem Physiol A: Physiol. 1997;117(3):335–41.

    Article  Google Scholar 

  52. Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, et al. Silica particles: a novel drug-delivery system. Adv Mater. 2004;16(21):1959–66.

    Article  CAS  Google Scholar 

  53. Jaganathan H, Godin B. Biocompatibility assessment of Si-based nano- and micro-particles. Adv Drug Deliv Rev. 2012;64(15):1800–19.

    Article  PubMed  CAS  Google Scholar 

  54. Rowe R. Handbook of pharmaceutical excipients. 7th ed. London: Pharmaceutical Press; 2006.

    Google Scholar 

  55. Pedersen GP, Faldt P, Bergenstahl B, Kristensen HG. Solid state characterisation of a dry emulsion: a potential drug delivery system. Int J Pharm. 1998;171(2):257–70.

    Article  CAS  Google Scholar 

  56. Myers SL, Shively ML. Solid-state emulsions: the effects of maltodextrin on microcrystalline aging. Pharm Res. 1993;10(9):1389–91.

    Article  PubMed  CAS  Google Scholar 

  57. Shah AV, Serajuddin ATM. Development of solid self-emulsifying drug delivery system (SEDDS) I: use of poloxamer 188 as both solidifying and emulsifying agent for lipids. Pharm Res. 2012;29(10):2817–32.

    Article  PubMed  CAS  Google Scholar 

  58. Chen Y, Chen C, Zheng J, Chen Z, Shi Q, Liu H. Development of a solid supersaturatable self-emulsifying drug delivery system of docetaxel with improved dissolution and bioavailability. Biol Pharm Bull. 2011;34(2):278–86.

    Article  PubMed  CAS  Google Scholar 

  59. Lladser M, Medrano C, Arancibia A. The use of supports in the lyophilization of oil-in-water emulsions. J Pharm Pharmacol. 1968;20(6):450–5.

    Article  PubMed  CAS  Google Scholar 

  60. Kim DW, Kang JH, Oh DH, Yong CS, Choi H-G. Development of novel flurbiprofen-loaded solid self-microemulsifying drug delivery system using gelatin as solid carrier. J Microencapsul. 2012;29(4):323–30.

    Article  PubMed  CAS  Google Scholar 

  61. Xia F, Jin H, Zhao Y, Guo X. Supercritical antisolvent-based technology for preparation of vitamin D3 proliposome and its characteristics. Chin J Chem Eng. 2011;19(6):1039–46.

    Article  CAS  Google Scholar 

  62. Hatanaka J, Shinme Y, Kuriyama K, Uchida A, Kou K, Uchida S, et al. In vitro and in vivo characterization of new formulations of st. john’s wort extract with improved pharmacokinetics and anti-nociceptive effect. Drug Metab Pharmacokinet. 2011;26(6):551–8.

    Article  PubMed  CAS  Google Scholar 

  63. Tan A, Davey AK, Prestidge CA. Silica-lipid hybrid (SLH) versus non-lipid formulations for optimising the dose-dependent oral absorption of celecoxib. Pharm Res. 2011;28(9):2273–87.

    Article  PubMed  CAS  Google Scholar 

  64. Lim LH, Tan A, Simovic S, Prestidge CA. Silica-lipid hybrid microcapsules: influence of lipid and emulsifier type on in vitro performance. Int J Pharm. 2011;409(1–2):297–306.

    Article  PubMed  CAS  Google Scholar 

  65. Yi T, Wan J, Xu H, Yang X. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose. Eur J Pharm Sci. 2008;34(4–5):274–80.

    Article  PubMed  CAS  Google Scholar 

  66. Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70(2):439–44.

    Article  PubMed  CAS  Google Scholar 

  67. Balakrishnan P, Lee B-J, Oh DH, Kim JO, Hong MJ, Jee J-P, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm. 2009;72(3):539–45.

    Article  PubMed  CAS  Google Scholar 

  68. Kang MJ, Jung SY, Song WH, Park JS, Choi S-U, Oh KT, et al. Immediate release of ibuprofen from Fujicalin®-based fast-dissolving self-emulsifying tablets. Drug Dev Ind Pharm. 2011;37(11):1298–305.

    Article  PubMed  CAS  Google Scholar 

  69. Moraes M, Carvalho JMP, Silva CR, Cho S, Sola MR, Pinho SC. Liposomes encapsulating beta-carotene produced by the proliposomes method: characterisation and shelf life of powders and phospholipid vesicles. Int J Food Sci Technol. 2013;48(2):274–82.

    Article  CAS  Google Scholar 

  70. Elhissi AMA, Ahmed W, McCarthy D, Taylor KMG. A study of size, microscopic morphology, and dispersion mechanism of structures generated on hydration of proliposomes. J Dispersion Sci Technol. 2012;33(8):1121–6.

    Article  CAS  Google Scholar 

  71. Shah NM, Parikh J, Namdeo A, Subramanian N, Bhowmick S. Preparation, characterization and in vivo studies of proliposomes containing cyclosporine A. J Nanosci Nanotechnol. 2006;6(9–10):2967–73.

    Article  PubMed  CAS  Google Scholar 

  72. Chu C, Tong S-S, Xu Y, Wang L, Fu M, Ge Y-R, et al. Proliposomes for oral delivery of dehydrosilymarin: preparation and evaluation in vitro and in vivo. Acta Pharmacol Sin. 2011;32(7):973–80.

    Article  PubMed  CAS  Google Scholar 

  73. Potluri P, Betageri GV. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Deliv. 2006;13(3):227–32.

    Article  PubMed  CAS  Google Scholar 

  74. Brocks DR, Betageri GV. Enhanced oral absorption of halofantrine enantiomers after encapsulation in a proliposomal formulation. J Pharm Pharmacol. 2002;54(8):1049–53.

    Article  PubMed  CAS  Google Scholar 

  75. Takeuchi H, Sasaki H, Niwa T, Hino T, Kawashima Y, Uesugi K, et al. Preparation of powdered redispersible vitamin E acetate emulsion by spray-drying technique. Chem Pharm Bull. 1991;39(6):1528–31.

    Article  CAS  Google Scholar 

  76. You J, Cui F-D, Han X, Wang Y-S, Yang L, Yu Y-W, et al. Study of the preparation of sustained-release microspheres containing zedoary turmeric oil by the emulsion-solvent-diffusion method and evaluation of the self-emulsification and bioavailability of the oil. Colloids Surf B Biointerfaces. 2006;48(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  77. Tan A, Prestidge C. Nanostructured silica-lipid hybrid microparticles: a supersaturating carrier for water- and lipid-resistant compounds. Chem Lett. 2012;41(10):1334–6.

    Article  CAS  Google Scholar 

  78. Agarwal V, Siddiqui A, Ali H, Nazzal S. Dissolution and powder flow characterization of solid self-emulsified drug delivery system (SEDDS). Int J Pharm. 2009;366(1–2):44–52.

    Article  PubMed  CAS  Google Scholar 

  79. Onoue S, Uchida A, Kuriyama K, Nakamura T, Seto Y, Kato M, et al. Novel solid self-emulsifying drug delivery system of coenzyme Q-10 with improved photochemical and pharmacokinetic behaviors. Eur J Pharm Sci. 2012;46(5):492–9.

    Article  PubMed  CAS  Google Scholar 

  80. Ragno G, Cione E, Garofalo A, Genchi G, Ioele G, Risoli A, et al. Design and monitoring of photostability systems for amlodipine dosage forms. Int J Pharm. 2003;265(1–2):125–32.

    Article  PubMed  CAS  Google Scholar 

  81. Van Speybroeck M, Williams HD, Nguyen T-H, Anby MU, Porter CJH, Augustijns P. Incomplete desorption of liquid excipients reduces the in vitro and in vivo performance of self-emulsifying drug delivery systems solidified by adsorption onto an inorganic mesoporous carrier. Mol Pharm. 2012;9(9):2750–60.

    Article  PubMed  CAS  Google Scholar 

  82. Tan A, Simovic S, Davey AK, Rades T, Boyd BJ, Prestidge CA. Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems. Mol Pharm. 2010;7(2):522–32.

    Article  PubMed  CAS  Google Scholar 

  83. Abdalla A, Klein S, Mader K. A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: characterization, dissolution, in vitro digestion and incorporation into solid pellets. Eur J Pharm Sci. 2008;35(5):457–64.

    Article  PubMed  CAS  Google Scholar 

  84. Dahan A, Hoffman A. Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm Res. 2006;23(9):2165–74.

    Article  PubMed  CAS  Google Scholar 

  85. Fatouros DG, Mullertz A. In vitro lipid digestion models in design of drug delivery systems for enhancing oral bioavailability. Expert Opin Drug Metab Toxicol. 2008;4(1):65–76.

    Article  PubMed  CAS  Google Scholar 

  86. Zvonar A, Berginc K, Kristl A, Gasperlin M. Microencapsulation of self-microemulsifying system: improving solubility and permeability of furosemide. Int J Pharm. 2010;388(1–2):151–8.

    Article  PubMed  CAS  Google Scholar 

  87. Chen Y, Li G, Huang J-G, Wang R-H, Liu H, Tang R. Comparison of self-microemulsifying drug delivery system versus solid dispersion technology used in the improvement of dissolution rate and bioavailability of vinpocetine. Acta Pharmaceutica Sinica. 2009;44(6):658–66.

    PubMed  CAS  Google Scholar 

  88. Huan D, Yi T, Liu Y, Xiao L, He J-K. Influence of silica on intestinal absorption of solid self-microemulsifying drug delivery systems. Acta Pharmaceutica Sinica. 2011;46(4):466–71.

    PubMed  CAS  Google Scholar 

  89. Washington N, Washington C, Wilson CG. Physiological pharmaceutics: barriers to drug absorption. 2nd ed. London: Taylor and Francis; 2001.

    Google Scholar 

  90. Swenson ES, Milisen WB, Curatolo W. Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility. Pharm Res. 1994;11(8):1132–42.

    Article  PubMed  CAS  Google Scholar 

  91. Custodio JM, Wu C-Y, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008;60(6):717–33.

    Article  PubMed  CAS  Google Scholar 

  92. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16(10):1550–6.

    Article  PubMed  CAS  Google Scholar 

  93. Yu L, Bridgers A, Polli J, Vickers A, Long S, Roy A, et al. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm Res. 1999;16(12):1812–7.

    Article  PubMed  CAS  Google Scholar 

  94. Collnot E-M, Baldes C, Wempe MF, Hyatt J, Navarro L, Edgar KJ, et al. Influence of vitamin E TPGS poly(ethylene glycol) chain length on apical efflux transporters in Caco-2 cell monolayers. J Control Release. 2006;111(1–2):35–40.

    Article  PubMed  CAS  Google Scholar 

  95. Sachs-Barrable K, Thamboo A, Lee SD, Wasan KM. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells. J Pharm Pharm Sci. 2007;10(3):319–31.

    PubMed  CAS  Google Scholar 

  96. Ingels F, Deferme S, Destexhe E, Oth M, Van Den Mooter G, Augustijns P. Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. Int J Pharm. 2002;232(1–2):183–92.

    Article  PubMed  CAS  Google Scholar 

  97. Konishi T, Satsu H, Hatsugai Y, Aizawa K, Inakuma T, Nagata S, et al. A bitter melon extract inhibits the P-glycoprotein activity in intestinal Caco-2 cells: monoglyceride as an active compound. Biofactors. 2004;22(1–4):71–4.

    Article  PubMed  CAS  Google Scholar 

  98. Wagner D, Spahn-Langguth H, Hanafy A, Koggel A, Langguth P. Intestinal drug efflux: formulation and food effects. Adv Drug Deliv Rev. 2001;50 Suppl 1:S13–31.

    Article  PubMed  CAS  Google Scholar 

  99. Mountfield RJ, Senepin S, Schleimer M, Walter I, Bittner B. Potential inhibitory effects of formulation ingredients on intestinal cytochrome P450. Int J Pharm. 2000;211(1–2):89–92.

    Article  PubMed  CAS  Google Scholar 

  100. Hiremath PS, Soppimath KS, Betageri GV. Proliposomes of exemestane for improved oral delivery: formulation and in vitro evaluation using PAMPA, Caco-2 and rat intestine. Int J Pharm. 2009;380(1–2):96–104.

    Article  PubMed  CAS  Google Scholar 

  101. Hamoudi MC, Bourasset F, Domergue-Dupont V, Gueutin C, Nicolas V, Fattal E, et al. Formulations based on alpha cyclodextrin and soybean oil: an approach to modulate the oral release of lipophilic drugs. J Control Release. 2012;161(3):861–7.

    Article  PubMed  CAS  Google Scholar 

  102. Wang Z, Sun J, Wang Y, Liu X, Liu Y, Fu Q, et al. Solid self-emulsifying nitrendipine pellets: preparation and in vitro/in vivo evaluation. Int J Pharm. 2010;383(1–2):1–6.

    Article  PubMed  CAS  Google Scholar 

  103. Sander C, Holm P. Porous magnesium aluminometasilicate tablets as carrier of a cyclosporine self-emulsifying formulation. AAPS PharmSciTech. 2009;10(4):1388–95.

    Article  PubMed  CAS  Google Scholar 

  104. Hu X, Lin C, Chen D, Zhang J, Liu Z, Wu W, et al. Sirolimus solid self-microemulsifying pellets: formulation development, characterization and bioavailability evaluation. Int J Pharm. 2012;438(1–2):123–33.

    Article  PubMed  CAS  Google Scholar 

  105. Trull AK, Tan KKC, Tan L, Alexander GJM, Jamieson NV. Enhanced absorption of new oral cyclosporin microemulsion formulation, Neoral, in liver transplant recipients with external biliary diversion. Transplant Proc. 1994;26(5):2977–8.

    PubMed  CAS  Google Scholar 

  106. Mueller EA, Kovarik JM, van Bree JB, Tetzloff W, Grevel J, Kutz K. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm Res. 1994;11(2):301–4.

    Article  PubMed  CAS  Google Scholar 

  107. Mueller EA, Kovarik JM, van Bree JB, Grevel J, Lucker PW, Kutz K. Influence of a fat-rich meal on the pharmacokinetics of a new oral formulation of cyclosporine in a crossover comparison with the market formulation. Pharm Res. 1994;11(1):151–5.

    Article  PubMed  CAS  Google Scholar 

  108. Kovarik JM, Mueller EA, van Bree JB, Tetzloff W, Kutz K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci. 1994;83(3):444–6.

    Article  PubMed  CAS  Google Scholar 

  109. Takeuchi H, Sasaki H, Niwa T, Hino T, Kawashima Y, Uesugi K, et al. Redispersible dry emulsion system as novel oral dosage form of oily drugs: in vivo studies in beagle dogs. Chem Pharm Bull. 1991;39(12):3362–4.

    Article  PubMed  CAS  Google Scholar 

  110. Paulson SK, Vaughn MB, Jessen SM, Lawal Y, Gresk CJ, Yan B, et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther. 2001;297(2):638–45.

    PubMed  CAS  Google Scholar 

  111. Shono Y, Jantratid E, Janssen N, Kesisoglou F, Mao Y, Vertzoni M, et al. Prediction of food effects on the absorption of celecoxib based on biorelevant dissolution testing coupled with physiologically based pharmacokinetic modeling. Eur J Pharm Biopharm. 2009;73(1):107–14.

    Article  PubMed  CAS  Google Scholar 

  112. Anby MU, Williams HD, McIntosh M, Benameur H, Edwards GA, Pouton CW, et al. Lipid digestion as a trigger for supersaturation: evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm. 2012;9(7):2063–79.

    Article  CAS  Google Scholar 

  113. El-Laithy HM, Shoukry O, Mahran LG. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm. 2011;77(1):43–55.

    Article  PubMed  CAS  Google Scholar 

  114. Iosio T, Voinovich D, Grassi M, Pinto JF, Perissutti B, Zacchigna M, et al. Bi-layered self-emulsifying pellets prepared by co-extrusion and spheronization: influence of formulation variables and preliminary study on the in vivo absorption. Eur J Pharm Biopharm. 2008;69(2):686–97.

    Article  PubMed  CAS  Google Scholar 

  115. Xu H, He L, Nie S, Guan J, Zhang X, Yang X, et al. Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits. J Control Release. 2009;140(1):61–8.

    Article  PubMed  CAS  Google Scholar 

  116. Janga KY, Jukanti R, Sunkavalli S, Velpula A, Bandari S, Kandadi P, et al. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders. J Microencapsul. 2013;30(2):161–72.

    Article  PubMed  CAS  Google Scholar 

  117. Dixit RP, Nagarsenker MS. Dry adsorbed emulsion of simvastatin: optimization and in vivo advantage. Pharm Dev Technol. 2007;12(5):495–504.

    Article  PubMed  CAS  Google Scholar 

  118. Iosio T, Voinovich D, Perissutti B, Serdoz F, Hasa D, Grabnar I, et al. Oral bioavailability of silymarin phytocomplex formulated as self-emulsifying pellets. Phytomedicine. 2011;18(6):505–12.

    Article  PubMed  CAS  Google Scholar 

  119. Aburahma MH, Abdelbary GA. Novel diphenyl dimethyl bicarboxylate provesicular powders with enhanced hepatocurative activity: preparation, optimization, in vitro/in vivo evaluation. Int J Pharm. 2012;422(1–2):139–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive A. Prestidge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, A., Rao, S. & Prestidge, C.A. Transforming Lipid-Based Oral Drug Delivery Systems into Solid Dosage Forms: An Overview of Solid Carriers, Physicochemical Properties, and Biopharmaceutical Performance. Pharm Res 30, 2993–3017 (2013). https://doi.org/10.1007/s11095-013-1107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1107-3

KEY WORDS

Navigation