Skip to main content

Advertisement

Log in

Brushed Block Copolymer Micelles with pH-Sensitive Pendant Groups for Controlled Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the effects of small aliphatic pendent groups conjugated through an acid-sensitive linker to the core of brushed block copolymer micelles on particle properties.

Methods

The brushed block copolymers were synthesized by conjugating five types of 2-alkanone (2-butanone, 2-hexanone, 2-octanone, 2-decanone, and 2-dodecanone) through an acid-labile hydrazone linker to poly(ethylene glycol)-poly(aspartate hydrazide) block copolymers.

Results

Only block copolymers with 2-hexanone and 2-octanone (PEG-HEX and PEG-OCT) formed micelles with a clinically relevant size (< 50 nm in diameter), low critical micelle concentration (CMC, < 20 μM), and drug entrapment yields (approximately 5 wt.%). Both micelles degraded in aqueous solutions in a pH-dependent manner, while the degradation was accelerated in an acidic condition (pH 5.0) in comparison to pH 7.4. Despite these similar properties, PEG-OCT micelles controlled the entrapment and pH-dependent release of a hydrophobic drug most efficiently, without altering particle size, shape, and stability. The molecular weight of PEG (12 kDa vs 5 kDa) induced no change in pH-controlled drug release rates of PEG-OCT micelles.

Conclusion

Acid-labile small aliphatic pendant groups are useful to control the entrapment and release of a hydrophobic drug physically entrapped in the core of brushed block copolymer micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.

    Article  PubMed  CAS  Google Scholar 

  2. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    Article  PubMed  CAS  Google Scholar 

  3. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  PubMed  CAS  Google Scholar 

  4. Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst. 1989;6:193–210.

    PubMed  CAS  Google Scholar 

  5. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    PubMed  CAS  Google Scholar 

  6. Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res. 1996;13:820–31.

    Article  PubMed  CAS  Google Scholar 

  7. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63:131–5.

    Article  PubMed  CAS  Google Scholar 

  8. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61:768–84.

    Article  PubMed  CAS  Google Scholar 

  9. Haag R. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed. 2004;43:278–82.

    Article  CAS  Google Scholar 

  10. Mikhail AS, Allen C. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release. 2009;138:214–23.

    Article  PubMed  CAS  Google Scholar 

  11. Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block-copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.

    Article  CAS  Google Scholar 

  12. Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, et al. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun. 2008:6570–2.

  13. Lee HJ, Jang KS, Jang S, Kim JW, Yang HM, Jeong YY, et al. Poly(amino acid)s micelle-mediated assembly of magnetite nanoparticles for ultra-sensitive long-term MR imaging of tumors. Chem Commun. 2010;46:3559–61.

    Article  CAS  Google Scholar 

  14. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed. 2004;43:6323–7.

    Article  CAS  Google Scholar 

  15. Kratz F, Beyer U, Schutte MT. Drug-polymer conjugates containing acid-cleavable bonds. Crit Rev Ther Drug Carrier Syst. 1999;16:245–88.

    Article  PubMed  CAS  Google Scholar 

  16. West KR, Otto S. Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol. 2005;2:123–60.

    Article  PubMed  CAS  Google Scholar 

  17. Lomaestro BM, Malone M. Glutathione in health and disease: pharmacotherapeutic issues. Ann Pharmacother. 1995;29:1263–73.

    PubMed  CAS  Google Scholar 

  18. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  PubMed  CAS  Google Scholar 

  19. Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromolecules. 2007;8:202–8.

    Article  PubMed  CAS  Google Scholar 

  20. Saravanakumar G, Min KH, Min DS, Kim AY, Lee CM, Cho YW, et al. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: Synthesis, characterization, and in vivo biodistribution. J Control Release. 2009;140:210–7.

    Article  PubMed  CAS  Google Scholar 

  21. Shin HC, Alani AW, Rao DA, Rockich NC, Kwon GS. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release. 2009;140:294–300.

    Article  PubMed  CAS  Google Scholar 

  22. Kim D, Gao ZG, Lee ES, Bae YH. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm. 2009;6:1353–62.

    Article  PubMed  CAS  Google Scholar 

  23. Lee ES, Na K, Bae YH. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 2005;5:325–9.

    Article  PubMed  CAS  Google Scholar 

  24. Yang SR, Lee HJ, Kim JD. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J Control Release. 2006;114:60–8.

    Article  PubMed  CAS  Google Scholar 

  25. Alani AWG, Bae Y, Rao DA, Kwon GS. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31:1765–72.

    Article  PubMed  CAS  Google Scholar 

  26. Bae Y, Diezi TA, Zhao A, Kwon GS. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release. 2007;122:324–30.

    Article  PubMed  CAS  Google Scholar 

  27. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed. 2003;42:4640–3.

    Article  CAS  Google Scholar 

  28. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem. 2005;16:122–30.

    Article  PubMed  CAS  Google Scholar 

  29. Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-Sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem. 2007;18:1131–9.

    Article  PubMed  CAS  Google Scholar 

  30. Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, et al. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules. 2009;10:119–27.

    Article  PubMed  CAS  Google Scholar 

  31. Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev. 2008;60:899–914.

    Article  PubMed  CAS  Google Scholar 

  32. Ponta A, Bae Y. PEG-poly(amino acid) block copolymer micelles for tunable drug release. Pharm Res. 2010;27:2330–42.

    Article  PubMed  CAS  Google Scholar 

  33. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49:24s–42s.

    Article  PubMed  CAS  Google Scholar 

  34. Lee ES, Gao ZG, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132:164–70.

    Article  PubMed  CAS  Google Scholar 

  35. Chandran T, Katragadda U, Teng Q, Tan C. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG). Int J Pharm. 2010;392:170–7.

    Article  PubMed  CAS  Google Scholar 

  36. Onyuksel H, Mohanty PS, Rubinstein I. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicine for breast cancer. Int J Pharm. 2009;365:157–61.

    Article  PubMed  Google Scholar 

  37. Stravopodis DJ, Margaritis LH, Voutsinas GE. Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the Hsp90 chaperone complex. Curr Med Chem. 2007;14:3122–38.

    Article  PubMed  CAS  Google Scholar 

  38. Won YW, Yoon SM, Sonn CH, Lee KM, Kim YH. Nano self-assembly of recombinant human gelatin conjugated with alpha-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano. 2011;5:3839–48.

    Article  PubMed  CAS  Google Scholar 

  39. Xiong MP, Yanez JA, Kwon GS, Davies NM, Forrest ML. A cremophor-free formulation for tanespimycin (17-AAG) using PEO-b-PDLLA micelles: characterization and pharmacokinetics in rats. J Pharm Sci. 2009;98:1577–86.

    Article  PubMed  CAS  Google Scholar 

  40. Bae Y, Jang W-D, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst. 2005;1:242–50.

    Article  PubMed  CAS  Google Scholar 

  41. Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21:107–16.

    Article  CAS  Google Scholar 

  42. Liu H, Farrell S, Uhrich K. Drug release characteristics of unimolecular polymeric micelles. J Control Release. 2000;68:167–74.

    Article  PubMed  CAS  Google Scholar 

  43. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48:139–57.

    Article  PubMed  CAS  Google Scholar 

  44. Klose D, Delplace C, Siepmann J. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles. Int J Pharm. 2011;404:75–82.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research is supported by the Kentucky Lung Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younsoo Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.J., Bae, Y. Brushed Block Copolymer Micelles with pH-Sensitive Pendant Groups for Controlled Drug Delivery. Pharm Res 30, 2077–2086 (2013). https://doi.org/10.1007/s11095-013-1060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1060-1

KEY WORDS

Navigation