Skip to main content
Log in

In Vitro Digestion of the Self-Emulsifying Lipid Excipient Labrasol® by Gastrointestinal Lipases and Influence of its Colloidal Structure on Lipolysis Rate

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Labrasol® is a self-emulsifying excipient used to improve the oral bioavailability of poorly water-soluble drugs. It is a mixture of acylglycerols and PEG esters, these compounds being substrates for digestive lipases. The characterization of Labrasol® gastrointestinal lipolysis is essential for understanding its mode of action.

Methods

Labrasol® lipolysis was investigated using either individual enzymes (gastric lipase, pancreatic lipase-related protein 2, pancreatic carboxyl ester hydrolase) or a combination of enzymes under in vitro conditions mimicking first the gastric phase of lipolysis and second the duodenal one. Specific methods for quantifying lipolysis products were established in order to determine which compounds in Labrasol® were preferentially hydrolyzed.

Results

Gastric lipase showed a preference for di- and triacylglycerols and the main acylglycerols remaining after gastric lipolysis were monoacylglycerols. PEG-8 diesters were also hydrolyzed to a large extent by gastric lipase. Most of the compounds initially present in Labrasol® were found to be totally hydrolyzed after the duodenal phase of lipolysis. The rate of Labrasol® hydrolysis by individual lipases was found to vary significantly with the dilution of the excipient in water and the resulting colloidal structures (translucent dispersion; opaque emulsion; transparent microemulsion), each lipase displaying a distinct pattern depending on the particle size.

Conclusions

The lipases with distinct substrate specificities used in this study were found to be sensitive probes of phase transitions occurring upon Labrasol® dilution. In addition to their use for developing in vitro digestion models, these enzymes are interesting tools for the characterization of self-emulsifying lipid-based formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CEH:

Carboxylester hydrolase

CMC:

Critical micellar concentration

DAG:

Diacylglycerol

FFA:

Free fatty acid

HPJ:

Human pancreatic juice

HPL:

Human pancreatic lipase

MAG:

Monoacylglycerol

NaTDC:

Sodium taurodeoxycholate

PCS:

Photon correlation spectroscopy

PPE:

Porcine pancreatic extracts

PPL:

porcine pancreatic lipase

PSD:

Particle size distribution

rDGL:

Recombinant dog gastric lipase

rHPLRP2:

Recombinant human pancreatic lipase-related protein 2

SEDDS:

Self Emulsifying Drug Delivery Systems

SMEDDS:

Self MicroEmulsifying Drug Delivery Systems

SNEDDS:

Self NanoEmulsifying Drug Delivery Systems

TAG:

Triacylglycerol

REFERENCES

  1. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  PubMed  Google Scholar 

  2. Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res. 1992;9(1):87–93.

    Article  PubMed  CAS  Google Scholar 

  3. Devani M, Ashford M, Craig DQ. The emulsification and solubilisation properties of polyglycolysed oils in self-emulsifying formulations. J Pharm Pharmacol. 2004;56(3):307–16.

    Article  PubMed  CAS  Google Scholar 

  4. Holm R, Porter CJ, Edwards GA, Mullertz A, Kristensen HG, Charman WN. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur J Pharm Sci. 2003;20(1):91–7.

    Article  PubMed  CAS  Google Scholar 

  5. Khoo SM, Humberstone AJ, Porter CJH, Edwards GA, Charman WN. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int J Pharm. 1998;167(1–2):155–64.

    Article  CAS  Google Scholar 

  6. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  PubMed  CAS  Google Scholar 

  7. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and 'self-microemulsifying' drug delivery systems. Eur J Pharm Sci. 2000;11 Suppl 2:S93–8.

    Article  PubMed  CAS  Google Scholar 

  8. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29:278–87.

    Article  PubMed  CAS  Google Scholar 

  9. Craig DQM, Lievens HSR, Pitt KG, Storey DE. An investigation into the physicochemical properties of self-emulsifying systems using low-frequency dielectric-spectroscopy, surface-tension measurements and particle size analysis. Int J Pharm. 1993;96(1–3):147–55.

    Article  CAS  Google Scholar 

  10. Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA. Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm. 2002;235(1–2):247–65.

    Article  PubMed  CAS  Google Scholar 

  11. Charman WN, Porter CJ, Mithani S, Dressman JB. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.

    Article  PubMed  CAS  Google Scholar 

  12. Fernandez S, Jannin V, Rodier JD, Ritter N, Mahler B, Carriere F. Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol, medium chain glycerides and PEG esters. Biochim Biophys Acta. 2007;1771(5):633–40.

    Article  PubMed  CAS  Google Scholar 

  13. Fernandez S, Rodier JD, Ritter N, Mahler B, Demarne F, Carriere F, et al. Lipolysis of the semi-solid self-emulsifying excipient Gelucire 44/14 by digestive lipases. Biochim Biophys Acta. 2008;1781(8):367–75.

    Article  PubMed  CAS  Google Scholar 

  14. Bakala N'Goma JC, Amara S, Dridi K, Jannin V, Carriere F. Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther Deliv. 2012;3(1):105–24.

    Article  PubMed  Google Scholar 

  15. Fernandez S, Chevrier S, Ritter N, Mahler B, Demarne F, Carrière F, et al. In vitro gastrointestinal lipolysis of four formulations of piroxicam and cinnarizine with the self emulsifying excipients Labrasol and Gelucire 44/14. Pharm Res. 2009;26(8):1901–10.

    Article  PubMed  CAS  Google Scholar 

  16. Porter CJ, Kaukonen AM, Taillardat-Bertschinger A, Boyd BJ, O'Connor JM, Edwards GA, et al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J Pharm Sci. 2004;93:1110–21.

    Article  PubMed  CAS  Google Scholar 

  17. Williams HD, Sassene P, Kleberg K, Bakala-N'Goma JC, Calderone M, Jannin V, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80.

    Article  PubMed  CAS  Google Scholar 

  18. Williams HD, Anby MU, Sassene P, Kleberg K, Bakala-N'goma JC, Calderone M, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV formulations during in vitro digestion. Mol Pharm. 2012;9(11):3286–300.

    Article  PubMed  CAS  Google Scholar 

  19. Ljusberg-Wahren H, Seier Nielsen F, Brogard M, Troedsson E, Mullertz A. Enzymatic characterization of lipid-based drug delivery systems. Int J Pharm. 2005;298(2):328–32.

    Article  PubMed  CAS  Google Scholar 

  20. Sek L, Boyd BJ, Charman WN, Porter CJ. Examination of the impact of a range of pluronic surfactants on the in-vitro solubilisation behaviour and oral bioavailability of lipidic formulations of atovaquone. J Pharm Pharmacol. 2006;58(6):809–20.

    Article  PubMed  CAS  Google Scholar 

  21. Sek L, Porter CJ, Charman WN. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densitometric analysis. J Pharm Biomed Anal. 2001;25(3–4):651–61.

    Article  PubMed  CAS  Google Scholar 

  22. Sek L, Porter CJ, Kaukonen AM, Charman WN. Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol. 2002;54(1):29–41.

    Article  PubMed  CAS  Google Scholar 

  23. Cuine JF, Charman WN, Pouton CW, Edwards GA, Porter CJ. Increasing the proportional content of surfactant (Cremophor EL) relative to lipid in self-emulsifying lipid-based formulations of danazol reduces oral bioavailability in beagle dogs. Pharm Res. 2007;24(4):748–57.

    Article  PubMed  CAS  Google Scholar 

  24. Cuine JF, McEvoy CL, Charman WN, Pouton CW, Edwards GA, Benameur H, et al. Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J Pharm Sci. 2008;97(2):995–1012.

    Article  PubMed  CAS  Google Scholar 

  25. Carrière F, Barrowman JA, Verger R, Laugier R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 1993;105(3):876–88.

    PubMed  Google Scholar 

  26. Gargouri Y, Pieroni G, Riviere C, Lowe PA, Sauniere JF, Sarda L, et al. Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim Biophys Acta. 1986;879(3):419–23.

    Article  PubMed  CAS  Google Scholar 

  27. Lengsfeld H, Beaumier-Gallon G, Chahinian H, De Caro A, Verger R, Laugier R, et al. Physiology of gastrointestinal lipolysis and therapeutical use of lipases and digestive lipase inhibitors. In: Müller G, Petry S, editors. Lipases and phospholipases in drug development. Weinheim: Wiley-VCH; 2004. p. 195–229.

    Google Scholar 

  28. Carrière F, Renou C, Lopez V, De Caro J, Ferrato F, Lengsfeld H, et al. The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology. 2000;119(4):949–60.

    Article  PubMed  Google Scholar 

  29. Carrière F, Renou C, Ransac S, Lopez V, De Caro J, Ferrato F, et al. Inhibition of gastrointestinal lipolysis by orlistat during digestion of test meals in healthy volunteers. Am J Physiol Gastrointest Liver Physiol. 2001;281(1):G16–28.

    PubMed  Google Scholar 

  30. Capolino P, Guérin C, Paume J, Giallo J, Ballester JM, Cavalier JF, et al. In vitro gastrointestinal lipolysis: replacement of human digestive lipases by a combination of rabbit gastric and porcine pancreatic extracts. Food Digestion. 2011;2:43–51.

    Article  CAS  Google Scholar 

  31. Vors C, Capolino P, Guerin C, Meugnier E, Pesenti S, Chauvin MA, et al. Coupling in vitro gastrointestinal lipolysis and caco-2 cell cultures for testing the absorption of different food emulsions. Food Funct. 2012;3(5):537–46.

    Article  PubMed  CAS  Google Scholar 

  32. Eaimtrakarn S, Rama Prasad YV, Ohno T, Konishi T, Yoshikawa Y, Shibata N, et al. Absorption enhancing effect of Labrasol on the intestinal absorption of insulin in rats. J Drug Target. 2002;10(3):255–60.

    Article  PubMed  CAS  Google Scholar 

  33. Hu Z, Tawa R, Konishi T, Shibata N, Takada K. A novel emulsifier, Labrasol, enhances gastrointestinal absorption of gentamicin. Life Sci. 2001;69(24):2899–910.

    Article  PubMed  CAS  Google Scholar 

  34. Prasad YV, Puthli SP, Eaimtrakarn S, Ishida M, Yoshikawa Y, Shibata N, et al. Enhanced intestinal absorption of vancomycin with Labrasol and D-alpha-tocopheryl PEG 1000 succinate in rats. Int J Pharm. 2003;250(1):181–90.

    Article  PubMed  CAS  Google Scholar 

  35. Rama Prasad YV, Minamimoto T, Yoshikawa Y, Shibata N, Mori S, Matsuura A, et al. In situ intestinal absorption studies on low molecular weight heparin in rats using Labrasol as absorption enhancer. Int J Pharm. 2004;271(1–2):225–32.

    Article  PubMed  CAS  Google Scholar 

  36. Bandyopadhyay S, Katare OP, Singh B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf B Biointerfaces. 2012;100:50–61.

    Article  PubMed  CAS  Google Scholar 

  37. Ragelle H, Crauste-Manciet S, Seguin J, Brossard D, Scherman D, Arnaud P, et al. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int J Pharm. 2012;427(2):452–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kim DW, Kang JH, Oh DH, Yong CS, Choi HG. Development of novel flurbiprofen-loaded solid self-microemulsifying drug delivery system using gelatin as solid carrier. J Microencapsul. 2012;29(4):323–30.

    Article  PubMed  CAS  Google Scholar 

  39. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Hong MJ, Jee JP, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm. 2009;72(3):539–45.

    Article  PubMed  CAS  Google Scholar 

  40. Kang MJ, Kim HS, Jeon HS, Park JH, Lee BS, Ahn BK, et al. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-microemulsifying drug delivery system. Drug Dev Ind Pharm. 2012;38(5):587–96.

    Article  PubMed  CAS  Google Scholar 

  41. Yan YD, Kim JA, Kwak MK, Yoo BK, Yong CS, Choi HG. Enhanced oral bioavailability of curcumin via a solid lipid-based self-emulsifying drug delivery system using a spray-drying technique. Biol Pharm Bull. 2011;34(8):1179–86.

    Article  PubMed  CAS  Google Scholar 

  42. Shen Y, Lu Y, Jv M, Hu J, Li Q, Tu J. Enhancing effect of Labrasol on the intestinal absorption of ganciclovir in rats. Drug Dev Ind Pharm. 2011;37(12):1415–21.

    Article  PubMed  CAS  Google Scholar 

  43. Green CE, Swezey R, Bakke J, Shinn W, Furimsky A, Bejugam N, et al. Improved oral bioavailability in rats of SR13668, a novel anti-cancer agent. Cancer Chemother Pharmacol. 2011;67(5):995–1006.

    Article  PubMed  CAS  Google Scholar 

  44. Barakat NS. Enhanced oral bioavailability of etodolac by self-emulsifying systems: in-vitro and in-vivo evaluation. J Pharm Pharmacol. 2010;62(2):173–80.

    Article  PubMed  CAS  Google Scholar 

  45. Venkatesh G, Majid MI, Mansor SM, Nair NK, Croft SL, Navaratnam V. In vitro and in vivo evaluation of self-microemulsifying drug delivery system of buparvaquone. Drug Dev Ind Pharm. 2010;36(6):735–45.

    Article  PubMed  CAS  Google Scholar 

  46. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Lee YI, Kim DD, et al. Enhanced oral bioavailability of coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm. 2009;374(1–2):66–72.

    Article  PubMed  CAS  Google Scholar 

  47. Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70(2):439–44.

    Article  PubMed  CAS  Google Scholar 

  48. Eydoux C, De Caro J, Ferrato F, Boullanger P, Lafont D, Laugier R, et al. Further biochemical characterization of human pancreatic lipase-related protein 2 expressed in yeast cells. J Lipid Res. 2007;48(7):1539–49.

    Article  PubMed  CAS  Google Scholar 

  49. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  50. Tuvignon N, Abousalham A, Tocques F, De Caro J, De Caro A, Laugier R, et al. Development of an indirect method for measuring porcine pancreatic lipase in human duodenal fluid. Anal Biochem. 2008;383(2):289–95.

    Article  PubMed  CAS  Google Scholar 

  51. Mitchell DA, Rodriguez JA, Carriere F, Baratti J, Krieger N. An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: application to the hydrolysis of triacylglycerols by lipases. J Biotechnol. 2008;133(3):343–50.

    Article  PubMed  CAS  Google Scholar 

  52. Carrière F, Moreau H, Raphel V, Laugier R, Bénicourt C, Junien J-L, et al. Purification and biochemical characterization of dog gastric lipase. Eur J Biochem. 1991;202(1):75–83.

    Article  PubMed  Google Scholar 

  53. Carrière F, Raphel V, Moreau H, Bernadac A, Devaux M-A, Grimaud R, et al. Dog gastric lipase: stimulation of its secretion in vivo and cytolocalization in mucous pit cells. Gastroenterology. 1992;102(5):1535–45.

    PubMed  Google Scholar 

  54. Carrière F, Laugier R, Barrowman JA, Douchet I, Priymenko N, Verger R. Gastric and pancreatic lipase levels during a test meal in dogs. Scand J Gastroenterol. 1993;28(5):443–54.

    Article  PubMed  Google Scholar 

  55. Roussel A, Miled N, Berti-Dupuis L, Riviere M, Spinelli S, Berna P, et al. Crystal structure of the open form of dog gastric lipase in complex with a phosphonate inhibitor. J Biol Chem. 2002;277(3):2266–74.

    Article  PubMed  CAS  Google Scholar 

  56. De Caro J, Eydoux C, Cherif S, Lebrun R, Gargouri Y, Carriere F, et al. Occurrence of pancreatic lipase-related protein-2 in various species and its relationship with herbivore diet. Comp Biochem Physiol B Biochem Mol Biol. 2008;150(1):1–9.

    Article  PubMed  Google Scholar 

  57. Fatouros DG, Bergenstahl B, Mullertz A. Morphological observations on a lipid-based drug delivery system during in vitro digestion. Eur J Pharm Sci. 2007;31(2):85–94.

    Article  PubMed  CAS  Google Scholar 

  58. Fatouros DG, Deen GR, Arleth L, Bergenstahl B, Nielsen FS, Pedersen JS, et al. Structural development of self nano emulsifying drug delivery systems (SNEDDS) during in vitro lipid digestion monitored by small-angle X-ray scattering. Pharm Res. 2007;24(10):1844–53.

    Article  PubMed  CAS  Google Scholar 

  59. Amara S, Lafont D, Fiorentino B, Boullanger P, Carriere F, De Caro A. Continuous measurement of galactolipid hydrolysis by pancreatic lipolytic enzymes using the pH-stat technique and a medium chain monogalactosyl diglyceride as substrate. Biochim Biophys Acta. 2009;1791(10):983–90.

    Article  PubMed  CAS  Google Scholar 

  60. Fernandez S, Najjar A, Robert S, Rodier JD, Mahler B, Demarne F, et al. Specific assay of carboxyl ester hydrolase using PEG esters as substrate. Analytical Methods. 2010;2(8):1013–9.

    Article  CAS  Google Scholar 

  61. Chahinian H, Snabe T, Attias C, Fojan P, Petersen SB, Carrière F. How gastric lipase - an interfacial enzyme with a Ser-His-Asp catalytic triad - acts optimally at acidic pH. Biochemistry. 2006;45(3):993–1001.

    Article  PubMed  CAS  Google Scholar 

  62. Benzonana G, Desnuelle P. Kinetic study of the action of pancreatic lipase on emulsified triglycerides. Enzymology assay in heterogeneous medium. Biochim Biophys Acta. 1965;105(1):121–36.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are grateful to Dr. Sawsan Amara for her help with the production and purification of rHPLRP2. Sylvie Fernandez’s PhD research was supported by a CIFRE contract from Association Nationale de la Recherche Technique (ANRT, France). Sylvie Fernandez, Vincent Jannin, Stéphanie Chevrier, Yann Chavant and Frédéric Demarne were all employed by Gattefossé SAS manufacturing and selling Labrasol® at the time this study was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Carrière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, S., Jannin, V., Chevrier, S. et al. In Vitro Digestion of the Self-Emulsifying Lipid Excipient Labrasol® by Gastrointestinal Lipases and Influence of its Colloidal Structure on Lipolysis Rate. Pharm Res 30, 3077–3087 (2013). https://doi.org/10.1007/s11095-013-1053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1053-0

KEY WORDS

Navigation