Skip to main content

Advertisement

Log in

In Vitro Investigations of the Efficacy of Cyclodextrin-siRNA Complexes Modified with Lipid-PEG-Octaarginine: Towards a Formulation Strategy for Non-viral Neuronal siRNA Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Development of RNA interference based therapeutics for neurological and neurodegenerative diseases is hindered by a lack of non-viral vectors with suitable properties for systemic administration. Amphiphilic and cationic cyclodextrins (CD) offer potential for neuronal siRNA delivery. We aimed to improve our CD-based siRNA formulation through incorporation of a polyethyleneglycol (PEG) shielding layer and a cell penetrating peptide, octaarginine (R8).

Methods

CD.siRNA complexes were modified by addition of an R8-PEG-lipid conjugate. Physical properties including size, charge and stability were assessed. Flow cytometry was used to determine uptake levels in a neuronal cell model. Knockdown of an exogenous gene and an endogenous housekeeping gene were used to assess gene silencing abilities.

Results

CD.siRNA complexes modified with R8-PEG-lipid exhibited a lower surface charge and greater stability to a salt-containing environment. Neuronal uptake was increased and significant reductions in the levels of two target genes were achieved with the new formulation. However, the PEG layer was not sufficient to protect against serum-induced aggregation.

Conclusions

The R8-PEG-lipid-CD.siRNA formulation displayed enhanced salt-stability due to the PEG component, while the R8 component facilitated transfection of neuronal cells and efficient gene silencing. Further improvements will be investigated in the future in order to optimise stability in serum and enhance neuronal specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

cyclodextrin

CNS:

central nervous system

DIW:

deionised water

DLS:

dynamic light scattering

DMSO:

dimethylsulphoxide

DSPE:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine

GAPDH:

glyceraldehyde phosphate dehydrogenase

MR:

mass ratio

mRNA:

messenger RNA

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide

ns:

non-silencing

PAMAM:

polyamidoamine

PEG:

polyethyleneglycol

PLL:

poly-L-lysine

R8:

octaarginine

RLU:

relative luminescence units

shRNA:

short hairpin RNA

siRNA:

small interfering RNA

References

  1. Maxwell MM. RNAi Applications in Therapy Development for Neurodegenerative Disease. Curr Pharm Des. 2009;15(34):3977–91.

    Article  PubMed  CAS  Google Scholar 

  2. Davidson BL, McCray Jr PB. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12(5):329–40.

    Article  PubMed  CAS  Google Scholar 

  3. Thakker DR, Hoyer D, Cryan JF. Interfering with the brain: Use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol Ther. 2006;109(3):413–38.

    Article  PubMed  CAS  Google Scholar 

  4. Bergen JM, Park IK, Horner PJ, Pun SH. Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res. 2008;25(5):983–98.

    Article  PubMed  CAS  Google Scholar 

  5. McMahon A, Gomez E, Donohue R, Forde D, Darcy R, O’Driscoll CM. Cyclodextrin gene vectors: Cell trafficking and the influence of lipophilic chain length. J Drug Delivery Sci Technol. 2008;18(5):303–7.

    CAS  Google Scholar 

  6. McMahon A, O’Neill MJ, Gomez E, Donohue R, Forde D, darcy R. Targeted gene delivery to hepatocytes with galactosylated amphiphilic cyclodextrins. J Pharm Pharmacol. 2012;64(8):1063–73.

    Article  PubMed  CAS  Google Scholar 

  7. O’ Neill MJ, Guo J, Byrne C, Darcy R, O’ Driscoll CM. Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. Int J Pharm. 2011;413(1–2):174–83.

    Article  PubMed  Google Scholar 

  8. Guo J, Ogier JR, Desgranges S, Darcy R, O’Driscoll C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials. 2012;33(31):7775–84.

    Article  PubMed  CAS  Google Scholar 

  9. Díaz-Moscoso A, Guilloteau N, Bienvenu C, Méndez-Ardoy A, Jiménez Blanco JL, Benito JM, et al. Mannosyl-coated nanocomplexes from amphiphilic cyclodextrins and pDNA for site-specific gene delivery. Biomaterials. 2011;32(29):7263–73.

    Article  PubMed  Google Scholar 

  10. Diaz-Moscoso A, Le Gourrierec L, Gomez-Garcia M, Benito JM, Balbuena P, Ortega-Caballero F, et al. Polycationic Amphiphilic Cyclodextrins for Gene Delivery: Synthesis and Effect of Structural Modifications on Plasmid DNA Complex Stability, Cytotoxicity, and Gene Expression. Chem—Eur J. 2009;15(46):12871–88.

    PubMed  CAS  Google Scholar 

  11. Mellet CO, Fernandez JMG, Benito JM. Cyclodextrin-based gene delivery systems. Chem Soc Rev. 2011;40(3):1586–608.

    Article  CAS  Google Scholar 

  12. Cryan SA, Donohue R, Ravo BJ, Darcy R, O’Driscoll CM. Cationic cyclodextrin amphiphiles as gene delivery vectors. J Drug Delivery Sci Technol. 2004;14(1):57–62.

    CAS  Google Scholar 

  13. O’Mahony AM, Doyle D, Darcy R, Cryan JF, O’ Driscoll CM. Characterisation of cationic amphiphilic cyclodextrins for neuronal delivery of siRNA: effect of reversing primary and secondary face modifications. Eur J Pharm Sci. 2012;47:896–903.

    Google Scholar 

  14. Heidel JD, Yu ZP, Liu JYC, Rele SM, Liang YC, Zeidan RK, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A. 2007;104(14):5715–21.

    Article  PubMed  CAS  Google Scholar 

  15. Arima H, Yamashita S, Mori Y, Hayashi Y, Motoyama K, Hattori K, et al. In Vitro and In Vivo gene delivery mediated by Lactosylated Dendrimer/alpha-Cyclodextrin Conjugates (G2) into Hepatocytes. J Controlled Release. 2010;146(1):106–17.

    Article  CAS  Google Scholar 

  16. O’Mahony AM, Godinho BMDC, Ogier J, Devocelle M, Darcy R, Cryan JF, et al. Click-Modified Cyclodextrins as Nonviral Vectors for Neuronal siRNA Delivery. ACS Chem Neurosci. 2012;3(10):744–52.

    Google Scholar 

  17. Kostarelos K, Miller AD. Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev. 2005;34(11):970–94.

    Article  PubMed  CAS  Google Scholar 

  18. Kim H-K, Davaa E, Myung C-S, Park J-S. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Int J Pharm. 2010;392(1–2):141–7.

    Article  PubMed  CAS  Google Scholar 

  19. Guo J, Fisher KA, Darcy R, Cryan JF, O’Driscoll C. Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol Biosyst. 2010;6(7):1143–61.

    PubMed  CAS  Google Scholar 

  20. Guo J, Cheng WP, Gu J, Ding C, Qu X, Yang Z, et al. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci. 2012;45:521–32.

    Article  PubMed  CAS  Google Scholar 

  21. O’Mahony AM, Ogier J, Desgranges S, Cryan JF, Darcy R, O’ Driscoll CM. A click chemistry route to 2-functionalised PEGylated and cationic β-cyclodextrins: co-formulation opportunities for siRNA delivery. Org Biomol Chem. 2012;10(25):4954–60.

    Article  PubMed  Google Scholar 

  22. Schäfer J, Höbel S, Bakowsky U, Aigner A. Liposome-polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials. 2010;31(26):6892–900.

    Article  PubMed  Google Scholar 

  23. Vader P, van der Aa LJ, Engbersen JFJ, Storm G, Schiffelers RM. Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(amido amine)s. Pharm Res. 2012;29(2):352–61.

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura Y, Kogure K, Futaki S, Harashima H. Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Controlled Release. 2007;119(3):360–7.

    Article  CAS  Google Scholar 

  25. Khalil IA, Kogure K, Futaki S, Hama S, Akita H, Ueno M, et al. Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther. 2007;14(8):682–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kim SW, Kim NY, Choi YB, Park SH, Yang JM, Shin S. RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system. J Controlled Release. 2010;143(3):335–43.

    Article  CAS  Google Scholar 

  27. Kim WJ, Christensen LV, Jo S, Yockman JW, Jeong JH, Kim Y-H, et al. Cholesteryl Oligoarginine Delivering Vascular Endothelial Growth Factor siRNA Effectively Inhibits Tumor Growth in Colon Adenocarcinoma. Mol Ther. 2006;14(3):343–50.

    Article  PubMed  Google Scholar 

  28. Tonges L, Lingor P, Egle R, Dietz GPH, Fahr A, Bahr M. Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA. 2006;12(7):1431–8.

    Article  PubMed  Google Scholar 

  29. Ifediba MA, Medarova Z, Ng SW, Yang JZ, Moore A. siRNA Delivery to CNS Cells using a Membrane Translocation Peptide. Bioconjugate Chem. 2010;21(5):803–6.

    Article  CAS  Google Scholar 

  30. Kim ID, Lim CM, Kim JB, Nam HY, Nam K, Kim SW, et al. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. J Controlled Release. 2010;142(3):422–30.

    Article  CAS  Google Scholar 

  31. Kim J-B, Choi JS, Nam K, Lee M, Park J-S, Lee J-K. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J Controlled Release. 2006;114(1):110–7.

    Article  CAS  Google Scholar 

  32. Perrier T, Saulnier P, Benoît J-P. Methods for the Functionalisation of Nanoparticles: New Insights and Perspectives. Chem—Eur J. 2010;16(38):11516–29.

    PubMed  CAS  Google Scholar 

  33. Ishida T, Iden DL, Allen TM. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett. 1999;460(1):129–33.

    Article  PubMed  CAS  Google Scholar 

  34. Allen TM, Sapra P, Moase E. Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett. 2002;7(2):217–9.

    PubMed  Google Scholar 

  35. Béduneau A, Saulnier P, Hindré F, Clavreul A, Leroux J-C, Benoit J-P. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials. 2007;28(33):4978–90.

    Article  PubMed  Google Scholar 

  36. Mendonca LS, Firmino F, Moreira JN, de Lima MCP, Simoes S. Transferrin Receptor-Targeted Liposomes Encapsulating anti-BCR-ABL siRNA or asODN for Chronic Myeloid Leukemia Treatment. Bioconjugate Chem. 2010;21(1):157–68.

    Article  CAS  Google Scholar 

  37. Nchinda G, Zschornig O, Uberla K. Increased non-viral gene transfer levels in mice by concentration of cationic lipid DNA complexes formed under optimized conditions. J Gene Med. 2003;5(8):712–22.

    Article  PubMed  CAS  Google Scholar 

  38. Howard KA, Li XW, Somavarapu S, Singh J, Green N, Atuah KN, et al. Formulation of a microparticle carrier for oral polyplex-based DNA vaccines. Biochim Biophys Acta, Gen Subj. 2004;1674(2):149–57.

    CAS  Google Scholar 

  39. Tsutsumi T, Hirayama F, Uekama K, Arima H. Potential use of polyamidoamine dendrimer/alpha-cyclodextrin conjugate (generation 3, G3) as a novel carrier for short hairpin RNA-expressing plasmid DNA. J Pharm Sci. 2008;97(8):3022–34.

    Article  PubMed  CAS  Google Scholar 

  40. Liu Y, Reineke TM. Poly(glycoamidoamine)s for Gene Delivery: Stability of Polyplexes and Efficacy with Cardiomyoblast Cells. Bioconjugate Chem. 2005;17(1):101–8.

    Article  Google Scholar 

  41. Srinivasachari S, Liu Y, Prevette LE, Reineke TM. Effects of trehalose click polymer length on pDNA complex stability and delivery efficacy. Biomaterials. 2007;28(18):2885–98.

    Article  PubMed  CAS  Google Scholar 

  42. Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AMF, Shkreta L. Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinol. 2004;145(1):393–400.

    Article  CAS  Google Scholar 

  43. Cardoso ALC, Simoes S, de Almeida LP, Plesnila N, de Lima MCP, Wagner E, et al. Tf-lipoplexes for neuronal siRNA delivery: A promising system to mediate gene silencing in the CNS. J Controlled Release. 2008;132(2):113–23.

    Article  CAS  Google Scholar 

  44. Wong YY, Markham K, Xu ZP, Chen M, Lu GQ, Bartlett PF, et al. Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. Biomaterials. 2010;31(33):8770–9.

    Article  PubMed  CAS  Google Scholar 

  45. Read ML, Mir S, Spice R, Seabright RJ, Suggate EL, Ahmed Z, et al. Profiling RNA interference (RNAi)-mediated toxicity in neural cultures for effective short interfering RNA design. J Gene Med. 2009;11(6):523–34.

    Article  PubMed  CAS  Google Scholar 

  46. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, et al. A New Potent Secondary Amphipathic Cell-penetrating Peptide for siRNA Delivery Into Mammalian Cells. Mol Ther. 2009;17(1):95–103.

    Article  PubMed  CAS  Google Scholar 

  47. Inoue Y, Kurihara R, Tsuchida A, Hasegawa M, Nagashima T, Mori T, et al. Efficient delivery of siRNA using dendritic poly(L-lysine) for loss-of-function analysis. J Controlled Release. 2008;126(1):59–66.

    Article  CAS  Google Scholar 

  48. Simen BB, Duman CH, Simen AA, Duman RS. TNF alpha signaling in depression and anxiety: Behavioral consequences of individual receptor targeting. Biol Psychiatry. 2006;59(9):775–85.

    Article  PubMed  CAS  Google Scholar 

  49. Li S-D, Chen Y-C, Hackett MJ, Huang L. Tumor-targeted Delivery of siRNA by Self-assembled Nanoparticles. Mol Ther. 2007;16(1):163–9.

    Article  PubMed  Google Scholar 

  50. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83(3):97.

    Article  PubMed  CAS  Google Scholar 

  51. Bartlett DW, Davis ME. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjugate Chem. 2007;18(2):456–68.

    Article  CAS  Google Scholar 

  52. Xia CF, Boado RJ, Pardridge WM. Antibody-Mediated Targeting of siRNA via the Human Insulin Receptor Using Avidin-Biotin Technology. Mol Pharm. 2009;6(3):747–51.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10(11):3667–77.

    Article  PubMed  CAS  Google Scholar 

  54. Ping Y, Liu C, Zhang Z, Liu KL, Chen J, Li J. Chitosan-graft-(PEI-beta-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials. 2011;32(32):8328–41.

    Article  PubMed  CAS  Google Scholar 

  55. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotech. 2005;23(8):1002–7.

    Article  CAS  Google Scholar 

  56. Kano A, Moriyama K, Yamano T, Nakamura I, Shimada N, Maruyama A. Grafting of poly(ethylene glycol) to poly-lysine augments its lifetime in blood circulation and accumulation in tumors without loss of the ability to associate with siRNA. J Controlled Release. 2011;149(1):2–7.

    Article  CAS  Google Scholar 

  57. de Wolf HK, Snel CJ, Verbaan FJ, Schiffelers RM, Hennink WE, Storm G. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. Int J Pharm. 2007;331(2):167–75.

    Article  PubMed  Google Scholar 

  58. Perez-Martinez FC, Guerra J, Posadas I, Cena V. Barriers to Non-Viral Vector-Mediated Gene Delivery in the Nervous System. Pharm Res. 2011;28(8):1843–58.

    Article  PubMed  CAS  Google Scholar 

  59. Martin-Herranz A, Ahmad A, Evans HM, Ewert K, Schulze U, Safinya CR. Surface functionalized cationic lipid-DNA complexes for gene delivery: PEGylated lamellar complexes exhibit distinct DNA-DNA interaction regimes. Biophys J. 2004;86(2):1160–8.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Controlled Release. 2006;112(2):229–39.

    Article  CAS  Google Scholar 

  61. Ho EA, Ramsay E, Ginj M, Anantha M, Bregman I, Sy J, et al. Characterization of cationic liposome formulations designed to exhibit extended plasma residence times and tumor vasculature targeting properties. J Pharm Sci. 2010;99(6):2839–53.

    PubMed  CAS  Google Scholar 

  62. Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther. 2006;13(6):541–52.

    Article  PubMed  CAS  Google Scholar 

  63. Kumar P, Wu HQ, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448:39–U2.

    Article  PubMed  CAS  Google Scholar 

  64. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnol. 2011;29(4):341–U179.

    Article  CAS  Google Scholar 

  65. Cardoso ALC, Costa P, de Almeida LP, Simoes S, Plesnila N, Culmsee C, et al. Tf-lipoplex-mediated c-Jun silencing improves neuronal survival following excitotoxic damage in vivo. J Controlled Release. 2010;142(3):392–403.

    Article  CAS  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

The authors wish to acknowledge Science Foundation Ireland (Strategic Research Cluster grant no. 07/SRC/B1154), the Irish Drug Delivery Network and the Irish Research Council for Science, Engineering and Technology (scholarship to A.O’Mahony) for research funding. We also wish to acknowledge Dr. Matt Gooding for assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitriona M. O’Driscoll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Size intensity profiles of (a) MR 20 0% R8 and (b) MR 20 20% R8 after incubation in FBS for 0, 2, 24 and 72 h. (JPEG 44 kb)

High resolution image (TIFF 1623 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Mahony, A.M., Desgranges, S., Ogier, J. et al. In Vitro Investigations of the Efficacy of Cyclodextrin-siRNA Complexes Modified with Lipid-PEG-Octaarginine: Towards a Formulation Strategy for Non-viral Neuronal siRNA Delivery. Pharm Res 30, 1086–1098 (2013). https://doi.org/10.1007/s11095-012-0945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0945-8

Key Words

Navigation