Skip to main content
Log in

Critical Solvent Properties Affecting the Particle Formation Process and Characteristics of Celecoxib-Loaded PLGA Microparticles via Spray-Drying

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

It is imperative to understand the particle formation mechanisms when designing advanced nano/microparticulate drug delivery systems. We investigated how the solvent power and volatility influence the texture and surface chemistry of celecoxib-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles prepared by spray-drying.

Methods

Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties and drug release profile. The evaporation profiles of the feed solutions were investigated using thermogravimetric analysis (TGA).

Results

Spherical PLGA microparticles were obtained, irrespectively of the solvent composition. The particle size and surface chemistry were highly dependent on the solvent power of the feed solution. An obvious burst release was observed for the microparticles prepared by the feed solutions with the highest amount of poor solvent for PLGA. TGA analysis revealed distinct drying kinetics for the binary mixtures.

Conclusions

The particle formation process is mainly governed by the PLGA precipitation rate, which is solvent-dependent, and the migration rate of celecoxib molecules during drying. The texture and surface chemistry of the spray-dried PLGA microparticles can therefore be tailored by adjusting the solvent composition.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022.

    Article  PubMed  CAS  Google Scholar 

  2. Delie F, Blanco-Prieto MJ. Polymeric particles to improve oral bioavailability of peptide drugs. Molecules. 2005;10:65–80.

    Article  PubMed  CAS  Google Scholar 

  3. Cook RO, Pannu RK, Kellaway IW. Novel sustained release microspheres for pulmonary drug delivery. J Control Release. 2005;104:79–90.

    Article  PubMed  CAS  Google Scholar 

  4. Alhalaweh A, Andersson S, Velaga SP. Preparation of zolmitriptan–chitosan microparticles by spray drying for nasal delivery. Eur J Pharm Sci. 2009;38:206–14.

    Article  PubMed  CAS  Google Scholar 

  5. Kristen Bowey RJN. Systemic and mucosal delivery of drugs within polymeric microparticles produced by spray drying. BioDrugs. 2010;24:359–77.

    Article  PubMed  Google Scholar 

  6. Fude C, Dongmei C, Anjin T, Mingshi Y, Kai S, Min Z, et al. Preparation and characterization of melittin-loaded poly (dl-lactic acid) or poly (dl-lactic-co-glycolic acid) microspheres made by the double emulsion method. J Control Release. 2005;107:310–9.

    Article  Google Scholar 

  7. Yang M, Cui F, You B, You J, Wang L, Zhang L, et al. A novel pH-dependent gradient-release delivery system for nitrendipine. J Control Release. 2004;98:219–29.

    PubMed  CAS  Google Scholar 

  8. Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24:411–37.

    Article  PubMed  CAS  Google Scholar 

  9. Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev. 2006;58:1009–29.

    Article  PubMed  CAS  Google Scholar 

  10. Kwok PC, Tunsirikongkon A, Glover W, Chan HK. Formation of protein nano-matrix particles with controlled surface architecture for respiratory drug delivery. Pharm Res. 2011;28:788–96.

    Article  PubMed  CAS  Google Scholar 

  11. Iskandar F, Nandiyanto ABD, Widiyastuti W, Young LS, Okuyama K, Gradon L. Production of morphology-controllable porous hyaluronic acid particles using a spray-drying method. Acta Biomater. 2009;5:1027–34.

    Article  PubMed  CAS  Google Scholar 

  12. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A. 2002;99:12001–5.

    Article  PubMed  CAS  Google Scholar 

  13. Maa YFPS. Biopharmaceutical powders particle formation and formulation considerations. Curr Pharm Biotechnol. 2000;1:283–302.

    Article  PubMed  CAS  Google Scholar 

  14. Saluja V, Amorij JP, Kapteyn JC, de Boer AH, Frijlink HW, Hinrichs WL. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144:127–33.

    Article  PubMed  CAS  Google Scholar 

  15. Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation. J Control Release. 2010;144:221–6.

    Article  PubMed  CAS  Google Scholar 

  16. Bi R, Shao W, Wang Q, Zhang N. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J Drug Target. 2008;16:639–48.

    Article  PubMed  CAS  Google Scholar 

  17. Casettari L, Castagnino E, Stolnik S, Lewis A, Howdle SM, Illum L. Surface characterisation of bioadhesive PLGA/chitosan microparticles produced by supercritical fluid technology. Pharm Res. 2011;28:1668–82.

    Article  PubMed  CAS  Google Scholar 

  18. Salmaso S, Elvassore N, Bertucco A, Caliceti P. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. J Pharm Sci. 2009;98:640–50.

    Article  PubMed  CAS  Google Scholar 

  19. Lee YH, Mei F, Bai MY, Zhao S, Chen DR. Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Control Release. 2010;145:58–65.

    Article  PubMed  CAS  Google Scholar 

  20. Jaworek A. Micro- and nanoparticle production by electrospraying. Powder Technol. 2007;176:18–35.

    Article  CAS  Google Scholar 

  21. Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: an overview. J Electrost. 2008;66:197–219.

    Article  CAS  Google Scholar 

  22. Ogain ON, Li J, Tajber L, Corrigan OI, Healy AM. Particle engineering of materials for oral inhalation by dry powder inhalers. I-Particles of sugar excipients (trehalose and raffinose) for protein delivery. Int J Pharm. 2011;405:23–35.

    Article  PubMed  CAS  Google Scholar 

  23. Rizi K, Green RJ, Donaldson M, Williams AC. Production of pH-responsive microparticles by spray drying: investigation of experimental parameter effects on morphological and release properties. J Pharm Sci. 2011;100:566–79.

    Article  PubMed  CAS  Google Scholar 

  24. Baldinger A, Clerdent L, Rantanen J, Yang M, Grohganz H. Quality by design approach in the optimization of the spray-drying process. Pharm Dev Technol. 2011.

  25. Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, van de Weert M. Quality by design—spray drying of insulin intended for inhalation. Eur J Pharm Sci. 2008;70:828–38.

    CAS  Google Scholar 

  26. Rabbani NR, Seville PC. The influence of formulation components on the aerosolisation properties of spray-dried powders. J Control Release. 2005;110:130–40.

    Article  PubMed  CAS  Google Scholar 

  27. Vehring R, Foss W, Lechugaballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38:728–46.

    Article  CAS  Google Scholar 

  28. Feng AL, Boraey MA, Gwin MA, Finlay PR, Kuehl PJ, Vehring R. Mechanistic models facilitate efficient development of leucine containing microparticles for pulmonary drug delivery. Int J Pharm. 2011;409:156–63.

    Article  PubMed  CAS  Google Scholar 

  29. Ivey JW, Vehring R. The use of modeling in spray drying of emulsions and suspensions accelerates formulation and process development. Comput Chem Eng. 2010;34:1036–40.

    Article  CAS  Google Scholar 

  30. Mezhericher M, Levy A, Borde I. Spray drying modelling based on advanced droplet drying kinetics. Chem Eng Process. 2010;49:1205–13.

    Article  CAS  Google Scholar 

  31. Paudel A, Mooter G. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying. Pharm Res. 2012;29:251–70.

    Article  PubMed  CAS  Google Scholar 

  32. Wang F-J, Wang C-H. Sustained release of etanidazole from prepared by non- spray dried microspheres halogenated solvents. J Control Release. 2002;81:263–80.

    Article  PubMed  CAS  Google Scholar 

  33. Giteau A, Venier-Julienne MC, Aubert-Pouëssel A, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm. 2008;350:14–26.

    Article  PubMed  CAS  Google Scholar 

  34. Chawla G, Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK. Characterization of solid-state forms of celecoxib. Eur J Pharm Sci. 2003;20:305–17.

    Article  PubMed  CAS  Google Scholar 

  35. Mu L, Teo M-M, Ning H-Z, Tan C-S, Feng S-S. Novel powder formulations for controlled delivery of poorly soluble anticancer drug: application and investigation of TPGS and PEG in spray-dried particulate system. J Control Release. 2005;103:565–75.

    Article  PubMed  CAS  Google Scholar 

  36. Wu JX, Yang M, Berg F, Pajander J, Rades T, Rantanen J. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability. Eur J Pharm Sci. 2011;44:610–20.

    Article  PubMed  CAS  Google Scholar 

  37. Yarin AL, Brenn G, Rensink D. Evaporation of acoustically levitated droplets of binary liquid mixtures. Int J Heat Fluid Flow. 2002;23:471–86.

    Article  CAS  Google Scholar 

  38. Schiffter HA. Single droplet drying of proteins and protein formulations via acoustic levitation. PhD Thesis Friedrich-Alexander-University, Erlangen, Germany.

  39. Wulsten E, Kiekens F, van Dycke F, Voorspoels J, Lee G. Levitated single-droplet drying: case study with itraconazole dried in binary organic solvent mixtures. Int J Pharm. 2009;378:116–21.

    Article  PubMed  CAS  Google Scholar 

  40. Shenoy S, Bates W, Frisch H, Wnek G. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer. 2005;46:3372–84.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was funded by The Danish Council for Technology and Innovation via the Innovation Consortium NanoMorph (952320/2009), The Drug Research Academy and The Danish Agency for Science, Technology and Innovation. The authors would also like to thank Erik Wisaeus, Kenneth Brian Haugshøj and Pia Wahlberg (Danish Technological Institute) and Dorthe Ørbæk (Faculty of Health and Medical Sciences, University of Copenhagen) for technical assistance with the SEM, FIB-SEM, XPS and TGA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshi Yang.

Additional information

Feng Wan and Adam Bohr contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, F., Bohr, A., Maltesen, M.J. et al. Critical Solvent Properties Affecting the Particle Formation Process and Characteristics of Celecoxib-Loaded PLGA Microparticles via Spray-Drying. Pharm Res 30, 1065–1076 (2013). https://doi.org/10.1007/s11095-012-0943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0943-x

KEY WORDS

Navigation