Skip to main content
Log in

Freeze-Dried Mannitol for Superior Pulmonary Drug Delivery via Dry Powder Inhaler

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To show for the first time the superior dry powder inhaler (DPI) performance of freeze dried mannitol in comparison to spray dried mannitol and commercial mannitol.

Methods

Different mannitol powders were sieved to collect 63–90 μm particles and then analyzed in terms of size, shape, surface morphology, solid state, density, flowability. Salbutamol sulphate-mannitol aerosol formulations were evaluated in terms of homogeneity, SS-mannitol adhesion, and in vitro aerosolization performance.

Results

Freeze dried mannitol demonstrated superior DPI performance with a fine particle fraction believed to be highest so far reported in literature for salbutamol sulphate under similar protocols (FPF = 46.9%). To lesser extent, spray dried mannitol produced better aerosolization performance than commercial mannitol. Freeze dried mannitol demonstrated elongated morphology, α-+β-+δ- polymorphic forms, and poor flowability whereas spray dried mannitol demonstrated spherical morphology, α-+β- polymorphic forms, and excellent flowability. Commercial mannitol demonstrated angular morphology, β- polymorphic form, and good flowability. Freeze dried mannitol demonstrated smoother surface than spray dried mannitol which in turn demonstrated smoother surface than commercial mannitol. FPF of SS increased as mannitol powder porosity increase.

Conclusions

Freeze drying under controlled conditions can be used as a potential technique to generate aerodynamically light mannitol particles for superior DPI performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blagden N, De Matas M, Gavan P, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59:617–30.

    Article  PubMed  CAS  Google Scholar 

  2. Aquino R, Prota L, Auriemma G, Santoro A, Mencherini T, Colombo G, Russo P. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells. Int J Pharm. 2012;426:100–7.

    Article  PubMed  CAS  Google Scholar 

  3. Kaialy W, Martin GP, Ticehurst MD, Momin MN, Nokhodchi A. The enhanced aerosol performance of salbutamol from dry powders containing engineered mannitol as excipient. Int J Pharm. 2010;392:178–88.

    Article  PubMed  CAS  Google Scholar 

  4. Kaialy W, Momin MN, Ticehurst MD, Murphy J, Nokhodchi A. Engineered mannitol as an alternative carrier to enhance deep lung penetration of salbutamol sulphate from dry powder inhaler. Colloid Surf B. 2010;79:345–56.

    Article  CAS  Google Scholar 

  5. Kaialy W, Martin GP, Ticehurst MD, Royall P, Mohammad MA, Murphy J, Nokhodchi A. Characterisation and deposition studies of recrystallised lactose from binary mixtures of ethanol/butanol for improved drug delivery from dry powder inhalers. AAPS J. 2011;13:30–43.

    Article  PubMed  CAS  Google Scholar 

  6. Kaialy W, Ticehurst MD, Murphy J, Nokhodchi A. Improved aerosolization performance of salbutamol sulfate formulated with lactose crystallized from binary mixtures of ethanol—acetone. J Pharm Sci. 2011;100:2665–84.

    Article  PubMed  CAS  Google Scholar 

  7. Kaialy W, Martin GP, Larhrib H, Ticehurst MD, Kolosionek E, Nokhodchi A. The influence of physical properties and morphology of crystallised lactose on delivery of salbutamol sulphate from dry powder inhalers. Colloid Surf B. 2012;89:29–39.

    Article  CAS  Google Scholar 

  8. Nokhodchi A, Kaialy W, Ticehurst MD. The influence of particle physicochemical properties on delivery of drugs by dry powder inhalers to the lung. In: Popescu MA, editor. Drug delivery book. NY: Hauppauge: Nova; 2011. p. 1–50.

    Google Scholar 

  9. Kaialy W, Alhalaweh A, Velaga SP, Nokhodchi A. Influence of lactose carrier particle size on the aerosol performance of budesonide from a dry powder inhaler. Powder Technol. 2012;227:74–85.

    Article  CAS  Google Scholar 

  10. Podczeck F. The relationship between physical properties of lactose monohydrate and the aerodynamic behaviour of adhered drug particles. Int J Pharm. 1998;160:119–30.

    Article  CAS  Google Scholar 

  11. Steckel H, Markefka P, TeWierik H, Kammelar R. Effect of milling and sieving on functionality of dry powder inhalation products. Int J Pharm. 2006;309:51–9.

    Article  PubMed  CAS  Google Scholar 

  12. Dickhoff B, De Boer A, Lambregts D, Frijlink H. The effect of carrier surface and bulk properties on drug particle detachment from crystalline lactose carrier particles during inhalation, as function of carrier payload and mixing time. Eur J Pharm Biopharm. 2003;56:291–302.

    Article  PubMed  CAS  Google Scholar 

  13. Donovan MJ, Smyth HDC. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations. Int J Pharm. 2010;402:1–9.

    Article  PubMed  CAS  Google Scholar 

  14. Kaialy W, Alhalaweh A, Velaga SP, Nokhodchi A. Effect of carrier particle shape on dry powder inhaler performance. Int J Pharm. 2011;421:12–23.

    Article  PubMed  CAS  Google Scholar 

  15. Kaialy W, Larhrib H, Ticehurst MD, Nokhodchi A. Influence of batch cooling crystallization on mannitol physical properties and drug dispersion from dry powder inhalers. Cryst Growth Des. 2012;12:300–3017.

    Article  Google Scholar 

  16. Le VNP, Thi THH, Robins E, Flament M. Dry powder inhalers: Study of the parameters influencing adhesion and dispersion of fluticasone propionate. AAPS PharmSciTech. 2012;13:477–84.

    Article  PubMed  CAS  Google Scholar 

  17. Traini D, Young PM, Thielmann F, Acharya M. The influence of lactose pseudopolymorphic form on salbutamol Sulfate–Lactose interactions in DPI formulations. Drug Dev Ind Pharm. 2008;34:992–1001.

    Article  PubMed  CAS  Google Scholar 

  18. Byron PR, Jashnam R. Efficiency of aerosolization from dry powder blends of terbutaline sulfate and lactose NF with different particle-size distributions. Pharm Res. 1990;7:881.

    Google Scholar 

  19. Donovan MJ, Kim SH, Raman V, Smyth HD. Dry powder inhaler device influence on carrier particle performance. J Pharm Sci. 2012;101:1097–107.

    Article  PubMed  CAS  Google Scholar 

  20. Shur J, Harris H, Jones MD, Kaerger JS, Price R. The role of fines in the modification of the fluidization and dispersion mechanism within dry powder inhaler formulations. Pharm Res. 2008;25:1631–40.

    Article  PubMed  CAS  Google Scholar 

  21. Zeng XM, Martin GP, Marriott C, Pritchard J. Lactose as a carrier in dry powder formulations: the influence of surface characteristics on drug delivery. J Pharm Sci. 2001;90:1424–34.

    Article  PubMed  CAS  Google Scholar 

  22. Schneid S, Riegger X, Gieseler H. Influence of common excipients on the crystalline modification of freeze-dried mannitol. Pharm Technol. 2008;3:32.

    Google Scholar 

  23. Takada A, Nail SL, Yonese M. Influence of ethanol on physical state of freeze-dried mannitol. Pharm Res. 2009;26:1112–20.

    Article  PubMed  CAS  Google Scholar 

  24. Hottot A, Nakagawa K, Andrieu J. Effect of ultrasound-controlled nucleation on structural and morphological properties of freeze-dried mannitol solutions. Chem Eng Res Design. 2008;86:193–200.

    Article  CAS  Google Scholar 

  25. Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze–drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87:931–5.

    Article  PubMed  CAS  Google Scholar 

  26. Kaialy W, Ticehurst MD, Nokhodchi A. Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate. Int J Pharm. 2012;423:184–94.

    Article  PubMed  CAS  Google Scholar 

  27. Kaialy W, Larhrib H, Martin GP, Nokhodchi A. The effect of engineered mannitol-lactose mixture on dry powder inhaler performance. Pharm Res. 2012;29:2139–56.

    Article  PubMed  CAS  Google Scholar 

  28. Krumbein WC. Measurement and geological significance of shape and roundness of sedimentary particles. J Sediment Res. 1941;11:64–72.

    CAS  Google Scholar 

  29. Fronczek FR, Kamel HN, Slattery M. Three polymorphs (α, β, and δ) of D-mannitol at 100 K. Acta Crystallogr. 2003;59:567–70.

    Google Scholar 

  30. Hinds WC. Aerosol technology: properties, behavior and measurement of airborne particles. New York: Jennings: Wiley; 1982.

  31. Edwards DA. Delivery of biological agents by aerosols. AIChE J. 2002;48:2–6.

    Article  CAS  Google Scholar 

  32. Hickey AJ. Pharmaceutical inhalation aerosol technology. New York: Marcel Dekker; 2004.

    Google Scholar 

  33. Ho R, Wilson DA, Heng JYY. Crystal habits and the variation in surface energy heterogeneity. Cryst Growth Des. 2009;9:4907–11.

    Article  CAS  Google Scholar 

  34. Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stöttner H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J Pharm Sci. 2000;89:457–68.

    Article  PubMed  CAS  Google Scholar 

  35. Le VNP, Bierend H, Robins E, Steckel H, Flament MP. Influence of the lactose grade within dry powder formulations of fluticasone propionate and terbutaline sulphate. Int J Pharm. 2011;422:75–82.

    Article  PubMed  Google Scholar 

  36. Ganderton D. The generation of respirable clouds from coarse powder aggregates. J Biopharm Sci. 1992;3:101–5.

    Google Scholar 

  37. Kassem NM, Ganderton D. The influence of carrier surface on the characteristics of inspirable powder aerosols. J Pharm Pharmacol. 1990;42(11).

  38. Staniforth JN, Rees JE, Lai FK, Hersey JA. Interparticle forces in binary and ternary ordered powder mixes. J Pharm Pharmacol. 1982;34(3):141–5.

    Article  PubMed  CAS  Google Scholar 

  39. Le V, Robins E, Flament M. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations. Eur J Pharm Biopharm. 2012;80:596–603.

    Article  PubMed  CAS  Google Scholar 

  40. Dunbar CA, Hickey AJ, Holzner P. Dispersion and characterization of pharmaceutical dry powder aerosols. Kona. 1998;16:7–45.

    CAS  Google Scholar 

  41. Yu L, Mishra DS, Rigsbee DR. Determination of the glass properties of D–mannitol using sorbitol as an impurity. J Pharm Sci. 1998;87:774–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

Waseem Kaialy thanks Dr. Ian Slipper (University of Greenwich) and Mr. Ian Brown (University of Kent) for help provided with SEM and AFM analysis respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Kaialy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaialy, W., Nokhodchi, A. Freeze-Dried Mannitol for Superior Pulmonary Drug Delivery via Dry Powder Inhaler. Pharm Res 30, 458–477 (2013). https://doi.org/10.1007/s11095-012-0892-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0892-4

KEY WORDS

Navigation