Skip to main content

Advertisement

Log in

Random Mutagenesis of β-Tubulin Defines a Set of Dispersed Mutations That Confer Paclitaxel Resistance

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Previous research showed that mutations in β1-tubulin are frequently involved in paclitaxel resistance but the question of whether the mutations are restricted by cell-type specific differences remains obscure.

Methods

To circumvent cellular constraints, we randomly mutagenized β-tubulin cDNA, transfected it into CHO cells, and selected for paclitaxel resistance.

Results

A total of 26 β1-tubulin mutations scattered throughout the sequence were identified and a randomly chosen subset were confirmed to confer paclitaxel resistance using site-directed mutagenesis of β-tubulin cDNA and transfection into wild-type cells. Immunofluorescence microscopy and biochemical fractionation studies indicated that cells expressing mutant tubulin had decreased microtubule polymer and frequently suffered mitotic defects that led to the formation of large multinucleated cells, suggesting a resistance mechanism that involves destabilization of the microtubule network. Consistent with this conclusion, the mutations were predominantly located in regions that are likely to be involved in lateral or longitudinal subunit interactions. Notably, fourteen of the new mutations overlapped previously reported mutations in drug resistant cells or in patients with developmental brain abnormalities.

Conclusions

A random mutagenesis approach allowed isolation of a wider array of drug resistance mutations and demonstrated that similar mutations can cause paclitaxel resistance and human neuronal abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CHO:

Chinese hamster ovary

cmd:

colcemid

GST:

glutathione S-transferase

HA:

hemagglutinin antigen

ptx:

paclitaxel

tet:

tetracycline

REFERENCES

  1. Leandro-Garcia LJ, Leskela S, Landa I, Montero-Conde C, Lopez-Jimenez E, Leton R, et al. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken). 2010;67:214–23.

    CAS  Google Scholar 

  2. Luduena RF. Are tubulin isotypes functionally significant. Mol Biol Cell. 1993;4:445–57.

    PubMed  CAS  Google Scholar 

  3. Ahmad S, Singh B, Gupta RS. Nucleotide sequences of three different isoforms of beta-tubulin cDNA from Chinese hamster ovary cells. Biochim Biophys Acta. 1991;1090:252–4.

    Article  PubMed  CAS  Google Scholar 

  4. Elliott EM, Henderson G, Sarangi F, Ling V. Complete sequence of three α-tubulin cDNAs in Chinese hamster ovary cells: each encodes a distinct α-tubulin isoprotein. Mol Cell Biol. 1986;6:906–13.

    PubMed  CAS  Google Scholar 

  5. Sawada T, Cabral F. Expression and function of β-tubulin isotypes in Chinese hamster ovary cells. J Biol Chem. 1989;264:3013–20.

    PubMed  CAS  Google Scholar 

  6. Risinger AL, Giles FJ, Mooberry SL. Microtubule dynamics as a target in oncology. Cancer Treat Rev. 2009;35:255–61.

    Article  PubMed  CAS  Google Scholar 

  7. Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202.

    Article  PubMed  CAS  Google Scholar 

  8. Gigant B, Wang C, Ravelli RBG, Roussi F, Steinmetz MO, Curmi PA, et al. Structural basis for the regulation of tubulin by vinblastine. Nature. 2005;435:519–22.

    Article  PubMed  CAS  Google Scholar 

  9. Downing KH. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Ann Rev Cell Dev Biol. 2000;16:89–111.

    Article  CAS  Google Scholar 

  10. Nogales E, Whittaker M, Milligan RA, Downing KH. High-resolution model of the microtubule. Cell. 1999;96:79–88.

    Article  PubMed  CAS  Google Scholar 

  11. Begaye A, Trostel S, Zhao Z, Taylor RE, Schriemer DC, Sackett DL. Mutations in the beta-tubulin binding site for peloruside A confer resistance by targeting a cleft significant in side chain binding. Cell Cycle. 2011;10

  12. Bennett MJ, Barakat K, Huzil JT, Tuszynski J, Schriemer DC. Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. Chem Biol. 2010;17:725–34.

    Article  PubMed  CAS  Google Scholar 

  13. Huzil JT, Chik JK, Slysz GW, Freedman H, Tuszynski J, Taylor RE, et al. A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol. 2008;378:1016–30.

    Article  PubMed  CAS  Google Scholar 

  14. Kanakkanthara A, Wilmes A, O’Brate A, Escuin D, Chan A, Gjyrezi A, et al. Peloruside- and laulimalide-resistant human ovarian carcinoma cells have betaI-tubulin mutations and altered expression of betaII- and betaIII-tubulin isotypes. Mol Cancer Ther. 2011;10:1419–29.

    Article  PubMed  CAS  Google Scholar 

  15. Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9:790–803.

    Article  PubMed  CAS  Google Scholar 

  16. Berrieman HK, Lind MJ, Cawkwell L. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol. 2004;5:158–64.

    Article  PubMed  CAS  Google Scholar 

  17. Yin S, Bhattacharya R, Cabral F. Human mutations that confer paclitaxel resistance. Mol Cancer Ther. 2010;9:327–35.

    Article  PubMed  CAS  Google Scholar 

  18. Cabral F. Mechanisms of resistance to drugs that interfere with microtubule assembly. In: Fojo AT, editor. Cancer drug discovery and development: The role of microtubules in cell biology, neurobiology, and oncology. Totowa: Humana Press; 2008. p. 337–56.

    Chapter  Google Scholar 

  19. Cabral F. Factors determining cellular mechanisms of resistance to antimitotic drugs. Drug Resistance Updates. 2001;3:1–6.

    Google Scholar 

  20. Huzil JT, Chen K, Kurgan L, Tuszynski JA. The roles of beta-tubulin mutations and isotype expression in acquired drug resistance. Cancer Inform. 2007;3:159–81.

    PubMed  Google Scholar 

  21. Gonzalez-Garay ML, Chang L, Blade K, Menick DR, Cabral F. A β-tubulin leucine cluster involved in microtubule assembly and paclitaxel resistance. J Biol Chem. 1999;274:23875–82.

    Article  PubMed  CAS  Google Scholar 

  22. Cabral F, Sobel ME, Gottesman MM. CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered β-tubulin. Cell. 1980;20:29–36.

    Article  PubMed  CAS  Google Scholar 

  23. Minotti AM, Barlow SB, Cabral F. Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem. 1991;266:3987–94.

    PubMed  CAS  Google Scholar 

  24. Yang H, Ganguly A, Cabral F. Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J Biol Chem. 2010;285:32242–50.

    Article  PubMed  CAS  Google Scholar 

  25. Schibler M, Cabral F. Taxol-dependent mutants of Chinese hamster ovary cells with alterations in α- and β-tubulin. J Cell Biol. 1986;102:1522–31.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Yin S, Blade K, Cooper G, Menick DR, Cabral F. Mutations at Leucine 215 of β-tubulin affect paclitaxel sensitivity by two distinct mechanisms. Biochemistry. 2006;45:185–94.

    Article  PubMed  CAS  Google Scholar 

  27. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA. 2000;97:2904–9.

    Article  PubMed  CAS  Google Scholar 

  28. Giannakakou P, Sackett DL, Kang Y-K, Zhan Z, Buters JTM, Fojo T, et al. Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem. 1997;272:17118–25.

    Article  PubMed  CAS  Google Scholar 

  29. Hara T, Ushio K, Nishiwaki M, Kouno J, Araki H, Hikichi Y, et al. A mutation in beta-tubulin and a sustained dependence on androgen receptor signalling in a newly established docetaxel-resistant prostate cancer cell line. Cell Biol Int. 2010;34:177–84.

    Article  PubMed  CAS  Google Scholar 

  30. Hari M, Loganzo F, Annable T, Tan X, Musto S, Morilla DB, et al. Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules. Mol Cancer Ther. 2006;5:270–8.

    Article  PubMed  CAS  Google Scholar 

  31. He L, Yang CP, Horwitz SB. Mutations in beta-tubulin map to domains involved in regulation of microtubule stability in epothilone-resistant cell lines. Mol Cancer Ther. 2001;1:3–10.

    PubMed  CAS  Google Scholar 

  32. Mozzetti S, Iantomasi R, De Maria I, Prislei S, Mariani M, Camperchioli A, et al. Molecular mechanisms of patupilone resistance. Cancer Res. 2008;68:10197–204.

    Article  PubMed  CAS  Google Scholar 

  33. Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, Norris MD, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol. 2003;10:597–607.

    Article  PubMed  CAS  Google Scholar 

  34. Yang CP, Verdier-Pinard P, Wang F, Lippaine-Horvath E, He L, Li D, et al. A highly epothilone B-resistant A549 cell line with mutations in tubulin that confer drug dependence. Mol Cancer Ther. 2005;4:987–95.

    Article  PubMed  CAS  Google Scholar 

  35. Blade K, Menick DR, Cabral F. Overexpression of class I, II, or IVb β-tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel. J Cell Sci. 1999;112:2213–21.

    PubMed  CAS  Google Scholar 

  36. Orr GA, Verdier-Pinard P, McDavid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene. 2003;22:7280–95.

    Article  PubMed  CAS  Google Scholar 

  37. Wang Y, Tian G, Cowan NJ, Cabral F. Mutations affecting β-tubulin folding and degradation. J Biol Chem. 2006;281:13628–35.

    Article  PubMed  CAS  Google Scholar 

  38. Bhattacharya R, Cabral F. A ubiquitous β-tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol Biol Cell. 2004;15:3123–31.

    Article  PubMed  CAS  Google Scholar 

  39. Boggs B, Cabral F. Mutations affecting assembly and stability of tubulin: evidence for a non-essential β-tubulin in CHO cells. Mol Cell Biol. 1987;7:2700–7.

    PubMed  CAS  Google Scholar 

  40. Cabral F, Abraham I, Gottesman MM. Isolation of a taxol-resistant Chinese hamster ovary cell mutant that has an alteration in α-tubulin. Proc Natl Acad Sci USA. 1981;78:4388–91.

    Article  PubMed  CAS  Google Scholar 

  41. Gonzalez-Garay ML, Cabral F. Overexpression of an epitope-tagged β-tubulin in Chinese hamster ovary cells causes an increase in endogenous α-tubulin synthesis. Cell Motil Cytoskeleton. 1995;31:259–72.

    Article  PubMed  CAS  Google Scholar 

  42. Yang H, Cabral F. Heightened sensitivity to paclitaxel in class IVa β-tubulin transfected cells is lost as expression increases. J Biol Chem. 2007;282:27058–66.

    Article  PubMed  CAS  Google Scholar 

  43. Gonzalez-Garay ML, Cabral F. α-tubulin limits its own synthesis: evidence for a mechanism involving translational repression. J Cell Biol. 1996;135:1525–34.

    Article  PubMed  CAS  Google Scholar 

  44. Abraham I, Marcus M, Cabral F, Gottesman MM. Mutations in α- and β-tubulin affect spindle formation in Chinese hamster ovary cells. J Cell Biol. 1983;97:1055–61.

    Article  PubMed  CAS  Google Scholar 

  45. Cabral F, Barlow SB. Resistance to antimitotic agents as genetic probes of microtubule structure and function. Pharmac Ther. 1991;52:159–71.

    Article  CAS  Google Scholar 

  46. Kung AL, Sherwood SW, Schimke RT. Cell line-specific differences in the control of cell cycle progression in the absence of mitosis. Proc Natl Acad Sci USA. 1990;87:9553–7.

    Article  PubMed  CAS  Google Scholar 

  47. Cabral F. Isolation of Chinese hamster ovary cell mutants requiring the continuous presence of taxol for cell division. J Cell Biol. 1983;97:22–9.

    Article  PubMed  CAS  Google Scholar 

  48. Cabral F, Wible L, Brenner S, Brinkley BR. Taxol-requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly. J Cell Biol. 1983;97:30–9.

    Article  PubMed  CAS  Google Scholar 

  49. Cabral F, Brady RC, Schibler MJ. A mechanism of cellular resistance to drugs that interfere with microtubule assembly. Ann NY Acad Sci. 1986;466:745–56.

    Article  PubMed  CAS  Google Scholar 

  50. Ganguly A, Yang H, Cabral F. Paclitaxel dependent cell lines reveal a novel drug activity. Mol Cancer Ther. 2010;9:2914–23.

    Article  PubMed  CAS  Google Scholar 

  51. Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors. Biochim Biophys Acta. 2011;1816:164–71.

    PubMed  CAS  Google Scholar 

  52. Yin S, Cabral F, Veeraraghavan S. Amino acid substitutions at proline 220 of β-tubulin confer resistance to paclitaxel and colcemid. Mol Cancer Ther. 2007;6:2798–806.

    Article  PubMed  CAS  Google Scholar 

  53. Tischfield MA, Cederquist GY, Gupta MLJ, Engle EC. Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr Opin Genet Dev. 2011;21:286–94.

    Article  PubMed  CAS  Google Scholar 

  54. Luduena RF. Multiple forms of tubulin: different gene products and covalent modifications. Internatl Rev Cytol. 1998;178:207–75.

    Article  CAS  Google Scholar 

  55. DeLano WL. MacPyMOL: A PyMOL-based molecular graphics application for MacOS X. South San Francisco: DeLano Scientific LLC; 2005.

    Google Scholar 

  56. Lowe J, Li H, Downing KH, Nogales E. Refined structure of αβ-tubulin at 3.5 A resolution. J Mol Biol. 2001;313:1045–57.

    Article  PubMed  CAS  Google Scholar 

  57. Wang Y, Veeraraghavan S, Cabral F. Intra-allelic suppression of a mutation that stabilizes microtubules and confers resistance to colcemid. Biochemistry. 2004;43:8965–73.

    Article  PubMed  CAS  Google Scholar 

  58. Jaglin XH, Poirier K, Saillour Y, Buhler E, Tian G, Bahi-Buisson N, et al. Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet. 2009;41:746–52.

    Article  PubMed  CAS  Google Scholar 

  59. Poruchynsky MS, Kim JH, Nogales E, Annable T, Loganzo F, Greenberger LM, et al. Tumor cells resistant to a microtubule-depolymerizing hemiasterlin analogue, HTI-286, have mutations in alpha- or beta-tubulin and increased microtubule stability. Biochemistry. 2004;43:13944–54.

    Article  PubMed  CAS  Google Scholar 

  60. Poirier K, Saillour Y, Bahi-Buisson N, Jaglin XH, Fallet-Bianco C, Nabbout R, et al. Mutations in the neuronal β-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet. 2010;19:4462–73.

    Article  PubMed  CAS  Google Scholar 

  61. Gokmen-Polar Y, Escuin D, Walls CD, Soule SE, Wang Y, Sanders KL, et al. beta-Tubulin mutations are associated with resistance to 2-methoxyestradiol in MDA-MB-435 cancer cells. Cancer Res. 2005;65:9406–14.

    Article  PubMed  Google Scholar 

  62. Liaw TY, Salam NK, McKay MJ, Cunningham AM, Hibbs DE, Kavallaris M. Class I beta-tubulin mutations in 2-methoxyestradiol-resistant acute lymphoblastic leukemia cells: implications for drug-target interactions. Mol Cancer Ther. 2008;7:3150–9.

    Article  PubMed  CAS  Google Scholar 

  63. Hari M, Wang Y, Veeraraghavan S, Cabral F. Mutations in α- and β-tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine. Mol Cancer Ther. 2003;2:597–605.

    PubMed  CAS  Google Scholar 

  64. Hua XH, Genini D, Gussio R, Tawatao R, Shih H, Kipps TJ, et al. Biochemical genetic analysis of indanocine resistance in human leukemia. Cancer Res. 2001;61:7248–54.

    PubMed  CAS  Google Scholar 

  65. Lee VD, Huang B. Missense mutations at lysine 350 in beta 2-tubulin confer altered sensitivity to microtubule inhibitors in Chlamydomonas. Plant Cell. 1990;2:1051–7.

    PubMed  CAS  Google Scholar 

  66. Bhattacharya R, Cabral F. Molecular basis for class V β-tubulin effects on microtubule assembly and paclitaxel resistance. J Biol Chem. 2009;284:13023–32.

    Article  PubMed  CAS  Google Scholar 

  67. Cheung CH, Wu SY, Lee TR, Chang CY, Wu JS, Hsieh HP, et al. Cancer cells acquire mitotic drug resistance properties through beta I-tubulin mutations and alterations in the expression of beta-tubulin isotypes. PLoS One. 2010;5:e12564.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

These studies were supported by grant CA85935 from the National Institutes of Health to FC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Cabral.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

Fig. S1

Paclitaxel prevents the morphological changes caused by mutant tubulin. Wild-type CHO cells (A, B) or the same cells transfected with HAβ1-tubulin containing F85L (C, D) or R320C (E, F) mutations were grown for 3 days without tetracycline but in the presence or absence of 250 nM paclitaxel (Ptx). The cells were stained with antibody DM1A to label the microtubules and with DAPI to stain the nuclei (shown in the insets). Bar = 10 μm (JPEG 130 kb)

High resolution image (TIFF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, S., Zeng, C., Hari, M. et al. Random Mutagenesis of β-Tubulin Defines a Set of Dispersed Mutations That Confer Paclitaxel Resistance. Pharm Res 29, 2994–3006 (2012). https://doi.org/10.1007/s11095-012-0794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0794-5

KEY WORDS

Navigation