Skip to main content

Advertisement

Log in

Magnetic Nanoparticles in Magnetic Resonance Imaging and Diagnostics

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMR:

diagnostic magnetic resonance

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

DPDP:

di-pyridoxyl- di-phosphate

DTPA:

diethylene-triamine –pentaacetic acid

HER2:

human epidermal growth factor receptor 2

MNP:

magnetic nanoparticle

MPI:

magnetic particle imaging

MRI:

magnetic resonance imaging

PEG:

poly-ethylene-glycol

PEI:

poly-ethylen-imine

PET:

positron emission tomography

SPIO:

superparamagnetic iron oxide

VEGF:

vascular endothelial growth factor

REFERENCES

  1. Alexiou C, Jurgons R, Schmid RJ, Hilpert A, Bergemann C, Parak FG, et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J Magn Magn Mater. 2005;293:389–93.

    Article  CAS  Google Scholar 

  2. Widder KJ, Senyei AE. Magnetic microspheres: A vehicle for selective targeting of drugs. Pharmacol Ther. 1983;20(3):377–95.

    Article  PubMed  CAS  Google Scholar 

  3. Luebbe AS, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. J Surg Res. 2001;95(2):200–6.

    Article  Google Scholar 

  4. Häfeli U. Magnetically modulated therapeutic systems. Int J Pharm. 2004;277(1–2):19–24.

    Article  PubMed  Google Scholar 

  5. McBain S, Yiu H, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine. 2008;3(2):169–80.

    PubMed  CAS  Google Scholar 

  6. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy. 2002;9(2):102–9.

    Article  PubMed  CAS  Google Scholar 

  7. Kirsch J. Basic principles of magnetic resonance contrast agents. Top Magn Reson Imag. 1991;3(2):1–18.

    Article  CAS  Google Scholar 

  8. Weissleder R, Elizondo G, Wittenberg J, Lee A, Josephson L, Brady T. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990;175(2):494–8.

    Google Scholar 

  9. Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.

    Article  PubMed  CAS  Google Scholar 

  10. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35(7):583–92.

    Article  PubMed  CAS  Google Scholar 

  11. Rancourt DG. Magnetism of Earth, planetary and environmental nanomaterials. In: Jillian FB, Alexandria N, editors. Nanoparticles and the enviroment: Mineralogical Society of America and The Geochemical Society. 2001;44:217–92.

  12. Gillis P, Koenig Seymour H. Transverse relaxation of solvent protons induced by magnetized spheres: Application to ferritin, erythrocytes, and magnetite. Magn Reson Med. 1987;5(4):323–45.

    Article  PubMed  CAS  Google Scholar 

  13. Kirschvink J, Kobayashi-Kirschvink A, Woodford B. Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A. 1992;89(16):7683–7.

    Article  PubMed  CAS  Google Scholar 

  14. Alexiou C, Diehl D, Henninger P, Iro H, Rockelein R, Schmidt W, et al. A high field gradient magnet for magnetic drug targeting. IEEE Trans Appl Supercond. 2006;16(2):1527–30.

    Article  Google Scholar 

  15. Plank C. Nanomagnetosols: magnetism opens up new perspectives for targeted aerosol delivery to the lung. Trends Biotechnol. 2008;26(2):59–63.

    Article  PubMed  CAS  Google Scholar 

  16. Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 1999;201(1–3):413–9.

    Article  CAS  Google Scholar 

  17. Rembaum A, Yen R, Kempner D, Ugelstad J. Cell labeling and magnetic separation by means of immunoreagents based on polyacrolein microspheres. J Immunol Methods. 1982;52(3):341–51.

    Article  PubMed  CAS  Google Scholar 

  18. Plank C, Schillinger U, Scherer F, Bergemann C, Rémy J-S, Krötz F, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem. 2003;384(5):737–47.

    Article  PubMed  CAS  Google Scholar 

  19. Sosnovik DE, Nahrendorf M, Weissleder R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol. 2008;103(2):122–30.

    Article  PubMed  CAS  Google Scholar 

  20. Schlorf T, Meincke M, Kossel E, Gluer C, Jansen O, Mentlein R. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int J Mol Sci. 2010;12(1):12–23.

    Article  PubMed  Google Scholar 

  21. Stanisz G, Odrobina E, Pun J, Escaravage M, Graham S, Bronskill M, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med. 2005;54(3):507–12.

    Article  PubMed  Google Scholar 

  22. Tysiak E, Asbach P, Aktas O, Waiczies H, Smyth M, Schnorr J, et al. Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI. J Neuroinflammation. 2009;6:20.

    Article  PubMed  Google Scholar 

  23. Hofmann-Amtenbrink M, Hofmann H, Montet X. Superparamagnetic nanoparticles - a tool for early diagnostics. Swiss Med Wkly. 2010;140:w13081.

    PubMed  Google Scholar 

  24. Corot C, Robert P, Idée J, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58(14):1471–504.

    Article  PubMed  CAS  Google Scholar 

  25. Chouly C, Pouliquen D, Lucet I, Jeune J, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul. 1996;13(3):245–55.

    Article  PubMed  CAS  Google Scholar 

  26. McCarthy J, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60(11):1241–51.

    Article  PubMed  CAS  Google Scholar 

  27. Nahrendorf M, Sosnovik DE, Weissleder R. MR-optical imaging of cardiovascular molecular targets. Basic Res Cardiol. 2008 Mar;103(2):87–94.

    Article  PubMed  CAS  Google Scholar 

  28. Zborowski A, Chalmers JJ. Magnetic cell seperation. In: van der Vliet P, Pillai S, editors: Laboratory Techniques in Biochemistry and Molecular Biology. Elsevier; 2003;32.

  29. Kittel C. Physical theory of ferromagnetic domains. Rev Mod Phys. 1949;21(4):541–83.

    Article  Google Scholar 

  30. Frei E, Shtrikman S, Treves D. Critical size and nucleation field of ideal ferromagnetic particles. Phys Rev. 1957;106(3):446–55.

    Article  CAS  Google Scholar 

  31. Kötitz R, Fannin P, Trahms L. Time domain study of Brownian and Néel relaxation in ferrofluids. J Magn Magn Mater. 1995;149(1–2):42–6.

    Article  Google Scholar 

  32. Kim T, Reis L, Rajan K, Shima M. Magnetic behavior of iron oxide nanoparticle biomolecule assembly. J Magn Magn Mater. 2005;295:132–8.

    Article  CAS  Google Scholar 

  33. Eberbeck D, Trahms L. Experimental investigation of dipolar interaction in suspensions of magnetic nanoparticles. J Magn Magn Mater. 2011;323:1228–32.

    Article  CAS  Google Scholar 

  34. Ferguson R, Minard Kevin R, Krishnan Kannan M. Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater. 2009;321(10):1548–51.

    Article  PubMed  CAS  Google Scholar 

  35. Rosensweig RE. Ferrodynamics: The behavior and dynamics of magnetic fluids receive a coherent, comprehensive treatment in this high-level study, encompassing electromagnetism and fields, magnetocaloric energy conversion, ferrohydrodynamic instabilities, and related subjects. Geared toward graduate students and researchers in physics, engineering, and applied mathematics. Preface. Appendixes. References. Indexes. Dover Publications. 1997.

  36. Brown WF. Thermal fluctuations of a single-domain particle. Phys Rev. 1963;130(5):1677–86.

    Article  Google Scholar 

  37. Krishnan K. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn. 2010;46(7):2523–58.

    Article  PubMed  CAS  Google Scholar 

  38. Cowburn R. Property variation with shape in magnetic nanoelements. J Phys D: Appl Phys. 2000;33(1):1.

    Article  Google Scholar 

  39. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res. 2010;62(2):144–9.

    Article  PubMed  CAS  Google Scholar 

  40. Lalatonne Y, Richardi J, Pileni M. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater. 2004;3(2):121–5.

    Article  PubMed  CAS  Google Scholar 

  41. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.

    Article  PubMed  CAS  Google Scholar 

  42. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70.

    Article  PubMed  CAS  Google Scholar 

  43. Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev. 2011;63(9):772–88.

    Article  PubMed  CAS  Google Scholar 

  44. Aime S, Cabella C, Colombatto S, Geninatti Crich S, Gianolio E, Maggioni F. Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging. 2002;16(4):394–406.

    Article  PubMed  Google Scholar 

  45. Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM. Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010.

  46. Lodhia J, Mandarano G, Ferris N, Eu P, Cowell S. Development and use of iron oxide nanoparticles (Part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imag Interv J. 2010;6(2):e12.

    CAS  Google Scholar 

  47. Veiseh O, Gunn J, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    Article  PubMed  CAS  Google Scholar 

  48. Stephen Zachary R, Kievit Forrest M, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today. 2011;14(7–8):330–8.

    Article  Google Scholar 

  49. Arias J, Lopez-Viota M, Ruiz M, Lopez-Viota J, Delgado A. Development of carbonyl iron/ethylcellulose core/shell nanoparticles for biomedical applications. Int J Pharm. 2007;339(1–2):237–45.

    Article  PubMed  CAS  Google Scholar 

  50. Pouponneau P, Leroux J, Martel S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials. 2009;30(31):6327–32.

    Article  PubMed  CAS  Google Scholar 

  51. Yoon T, Lee H, Shao H, Weissleder R. Highly magnetic core-shell nanoparticles with a unique magnetization mechanism. Angew Chem Int Ed Engl. 2011;50(20):4663–6.

    Article  PubMed  CAS  Google Scholar 

  52. Drbohlavova J, Hrdy R, Adam V, Kizek R, Schneeweiss O, Hubalek J. Preparation and properties of various magnetic nanoparticles. Sensors. 2009;9(4):2352–62.

    Article  CAS  Google Scholar 

  53. Haun J, Devaraj N, Hilderbrand S, Lee H, Weissleder R. Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nat Nanotechnol. 2010;5(9):660–5.

    Article  PubMed  CAS  Google Scholar 

  54. Wiegers CB, Welch MJ, Sharp TL, Brown JJ, Perman WH, Sun Y, et al. Evaluation of two new gadolinium chelates as contrast agents for MRI. Magnet Res Imaging. 1992;10(6):903–11.

    Article  CAS  Google Scholar 

  55. Lei X, Jockusch S, Turro N, Tomalia D, Ottaviani M. EPR characterization of gadolinium(III)-containing-PAMAM-dendrimers in the absence and in the presence of paramagnetic probes. J Colloid Interface Sci. 2008;322(2):457–64.

    Article  PubMed  CAS  Google Scholar 

  56. Mahmoudi M, Azadmanesh K, Shokrgozar M, Journeay W, Laurent S. Effect of nanoparticles on the cell life cycle. Chem Rev. 2011;111(5):3407–32.

    Article  PubMed  CAS  Google Scholar 

  57. Moore A, Weissleder R, Bogdanov A. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging. 1997;7(6):1140–5.

    Article  PubMed  CAS  Google Scholar 

  58. Chithrani B, Chan W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7(6):1542–50.

    Article  PubMed  CAS  Google Scholar 

  59. Gossuin Y, Gillis P, Hocq A, Voung QL, Roch A. Magnetic Resonance Relaxation properties of superparamagnetic particles. Wileys Interdiscipl Rev: Nanomed Nanobiotech. 2009;1:299–310.

    Article  CAS  Google Scholar 

  60. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 2010;30(1):15–35.

    Article  PubMed  CAS  Google Scholar 

  61. Weissleder R, Stark D, Engelstad B, Bacon B, Compton C, White D, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol. 1989;152(1):167–73.

    CAS  Google Scholar 

  62. Lévy M, Lagarde F, Maraloiu V, Blanchin M, Gendron F, Wilhelm C, et al. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology. 2010;21(39):395103.

    Article  PubMed  Google Scholar 

  63. Thorek D, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials. 2008;29(26):3583–90.

    Article  PubMed  CAS  Google Scholar 

  64. Bloch F. Nuclear induction. Phys Rev. 1946;70(7–8):460–74.

    Article  CAS  Google Scholar 

  65. Purcell E, Torrey H, Pound R. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69(1–2):37–8.

    Article  CAS  Google Scholar 

  66. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–352.

    Article  PubMed  CAS  Google Scholar 

  67. Patel D, Kell A, Simard B, Xiang B, Lin H, Tian G. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials. 2011;32(4):1167–76.

    Article  PubMed  CAS  Google Scholar 

  68. Kurki T, Komu M. Spin-lattice relaxation and magnetization transfer in intracranial tumors in vivo: effects of Gd-DTPA on relaxation parameters. Magnet Res Imaging. 1995;13(3):379–85.

    Article  CAS  Google Scholar 

  69. Bloembergen N. Proton relaxation times in paramagnetic solutions. J Chem Phys. 1957;27(2):572–3.

    Article  CAS  Google Scholar 

  70. Bloembergen N, Morgan LO. Proton relaxation times in paramagnetic solutions effects of electron spin relaxation. J Chem Phys. 1961;34(3):842–50.

    Article  CAS  Google Scholar 

  71. Pankhurst Q, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36(13):167.

    Article  Google Scholar 

  72. Gossuin Y, Roch A, Muller Robert N, Gillis P. An evaluation of the contributions of diffusion and exchange in relaxation enhancement by MRI contrast agents. J Magnet Res. 2002;158(1–2):36–42.

    Article  CAS  Google Scholar 

  73. Reiser MF, Semmler W, Hricak H. Magnetic resonance tomography. Springer: Berlin, Heidelberg; 2008.

  74. Lauterbur PC. Image formation by induced local interactions - examples employing nuclear magnetic-resonance. Nature. 1973;242(5394):190–1.

    Article  CAS  Google Scholar 

  75. Mansfield P, Grannell PK. NMR ‘diffraction’ in solids? J Phys C: Solid State Phys. 1973;6(22):L422.

    Article  CAS  Google Scholar 

  76. Baumann D, Rudin M. Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magnet Res Imaging. 2000;18(5):587–95.

    Article  CAS  Google Scholar 

  77. Stroh A, Faber C, Neuberger T, Lorenz P, Sieland K, Jakob P, et al. In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. NeuroImage. 2005;24(3):635–45.

    Article  PubMed  Google Scholar 

  78. Weissleder R, Cheng H-C, Bogdanova A, Bogdanov A. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging. 1997;7(1):258–63.

    Article  PubMed  CAS  Google Scholar 

  79. Haefeli U, Lobedann M, Steingroewer J, Moore L, Riffle J. Optical method for measurement of magnetophoretic mobility of individual magnetic microspheres in defined magnetic field. J Magn Magn Mater. 2005;293:224–39.

    Article  CAS  Google Scholar 

  80. Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrimm H, et al. In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol. 2002;37(9):482–8.

    Article  PubMed  CAS  Google Scholar 

  81. Heymer A, Haddad D, Weber M, Gbureck U, Jakob P, Eulert J, et al. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials. 2008;29(10):1473–83.

    Article  PubMed  CAS  Google Scholar 

  82. Gore J, Manning H, Quarles C, Waddell K, Yankeelov T. Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging. 2011;29(5):587–600.

    Article  PubMed  CAS  Google Scholar 

  83. Haun J, Devaraj N, Marinelli B, Lee H, Weissleder R. Probing intracellular biomarkers and mediators of cell activation using nanosensors and bioorthogonal chemistry. ACS Nano. 2011;5(4):3204–13.

    Article  PubMed  CAS  Google Scholar 

  84. Muller RN, Gillis P, Moiny F, Roch A. Transverse relaxivity of particulate MRI contrast media: from theories to experiments. Magn Reson Med. 1991;22(2):178–82.

    Article  PubMed  CAS  Google Scholar 

  85. Roch A, Gossuin Y, Muller Robert N, Gillis P. Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J Magnet Magnet Mater. 2005;293:532–9.

    Article  CAS  Google Scholar 

  86. Baudry J, Rouzeau C, Goubault C, Robic C, Cohen-Tannoudji L, Koenig A, et al. Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces. Proc Natl Acad Sci U S A. 2006;103(44):16076–8.

    Article  PubMed  CAS  Google Scholar 

  87. Perez J, Josephson L, Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem. 2004;5(3):261–4.

    Article  PubMed  CAS  Google Scholar 

  88. Aurich K, Nagel S, Glöckl G, Weitschies W. Determination of the magneto-optical relaxation of magnetic nanoparticles as a homogeneous immunoassay. Anal Chem. 2007;79(2):580–6.

    Article  PubMed  CAS  Google Scholar 

  89. Kim G, Josephson L, Langer R, Cima M. Magnetic relaxation switch detection of human chorionic gonadotrophin. Bioconjug Chem. 2007;18(6):2024–8.

    Article  PubMed  CAS  Google Scholar 

  90. Koh I, Hong R, Weissleder R, Josephson L. Sensitive NMR sensors detect antibodies to influenza. Angew Chem Int Ed Engl. 2008;47(22):4119–21.

    Article  PubMed  CAS  Google Scholar 

  91. Koh I, Hong R, Weissleder R, Josephson L. Nanoparticle-target interactions parallel antibody-protein interactions. Anal Chem. 2009;81(9):3618–22.

    Article  PubMed  CAS  Google Scholar 

  92. Quillard T, Croce K, Jaffer F, Weissleder R, Libby P. Molecular imaging of macrophage protease activity in cardiovascular inflammation in vivo. Thromb Haemost. 2011;105(5):828–36.

    Article  PubMed  CAS  Google Scholar 

  93. Lee H, Sun E, Ham D, Weissleder R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med. 2008;14(8):869–74.

    Article  PubMed  Google Scholar 

  94. Lee H, Yoon T, Weissleder R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew Chem Int Ed Engl. 2009;48(31):5657–60.

    Article  PubMed  CAS  Google Scholar 

  95. Issadore D, Min C, Liong M, Chung J, Weissleder R, Lee H. Miniature magnetic resonance system for point-of-care diagnostics. Lab Chip. 2011;11(13):2282–7.

    Article  PubMed  CAS  Google Scholar 

  96. Haun J, Castro C, Wang R, Peterson V, Marinelli B, Lee H, et al. Micro-NMR for rapid molecular analysis of human tumor samples. Sci Transl Med. 2011;3(71):71ra16.

    Article  PubMed  Google Scholar 

  97. Choi J, Park J, Nah H, Woo S, Oh J, Kim K, et al. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl. 2008;47(33):6259–62.

    Article  PubMed  CAS  Google Scholar 

  98. Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio P, Fexon L, et al. Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci U S A. 2010;107(17):7910–5.

    Article  PubMed  Google Scholar 

  99. Alexiou C, Tietze R, Schreiber E, Jurgons R, Richter H, Trahms L, et al. Cancer therapy with drug loaded magnetic nanoparticles - magnetic drug targeting. J Magn Magn Mater. 2011;323:1404–7.

    Article  CAS  Google Scholar 

  100. Maeng J, Lee D, Jung K, Bae Y, Park I, Jeong S, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 2010;31(18):4995–5006.

    Article  PubMed  CAS  Google Scholar 

  101. Hong R, Cima M, Weissleder R, Josephson L. Magnetic microparticle aggregation for viscosity determination by MR. Magn Reson Med. 2008;59(3):515–20.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We thank J. Hintermair and A. Heidsieck, Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Germany for performing cell culture and computer simulation and S. Glaser, Chemistry Department, Technische Universität München, Germany, for providing the NMR spectrometers.

This work was partly supported by a grant of the Deutsche Forschungsgesellschaft (DFG, grant no. GL 661/1-1) within the Research Unit 917 “Nanoparticle-based targeting of gene- and cell-based therapies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Haase.

Additional information

Christine Rümenapp and Bernhard Gleich contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rümenapp, C., Gleich, B. & Haase, A. Magnetic Nanoparticles in Magnetic Resonance Imaging and Diagnostics. Pharm Res 29, 1165–1179 (2012). https://doi.org/10.1007/s11095-012-0711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0711-y

KEY WORDS

Navigation