Skip to main content
Log in

Block Copolymer Micelles for Controlled Delivery of Glycolytic Enzyme Inhibitors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop block copolymer micelles as an aqueous dosage form for a potent glycolytic enzyme inhibitor, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO).

Methods

The micelles were prepared from poly(ethylene glycol)-poly(aspartate hydrazide) [PEG-p(HYD)] block copolymers to which 3PO was conjugated through an acid-labile hydrazone bond. The optimal micelle formulation was determined following the screening of block copolymer library modified with various aromatic and aliphatic pendant groups. Both physical drug entrapment and chemical drug conjugation methods were tested to maximize 3PO loading in the micelles during the screening.

Results

Particulate characterization showed that the PEG-p(HYD) block copolymers conjugated with 3PO (2.08∼2.21 wt.%) appeared the optimal polymer micelles. Block copolymer compositions greatly affected the micelle size, which was 38 nm and 259 nm when 5 kDa and 12 kDa PEG chains were used, respectively. 3PO release from the micelles was accelerated at pH 5.0, potentiating effective drug release in acidic tumor environments. The micelles retained biological activity of 3PO, inhibiting various cancer cells (Jurkat, He-La and LLC) in concentration ranges similar to free 3PO.

Conclusion

A novel micelle formulation for controlled delivery of 3PO was successfully prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Berdanier CD. Drugs, nutrients, and hormones in mitochondrial function. Oxid Stress Dis. 2005;16:455–506.

    Article  CAS  Google Scholar 

  2. Vizan P, Boros LG, Figueras A, Capella G, Mangues R, Bassilian S, et al. K-ras codon-specific mutations produce distinctive metabolic phenotypes in human fibroblasts. Cancer Res. 2005;65:5512–5.

    Article  PubMed  CAS  Google Scholar 

  3. Hue L, Rousseau GG. Fructose-2,6-bisphosphate and the control of glycolysis by growth-factors, tumor promoters and oncogenes. Adv Enzyme Regul. 1993;33:97–110.

    Article  PubMed  CAS  Google Scholar 

  4. Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci. 2005;102:5992–7.

    Article  PubMed  CAS  Google Scholar 

  5. Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E. Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and hpv-16 e7. Oncogene. 2001;20:6891–8.

    Article  PubMed  CAS  Google Scholar 

  6. Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, et al. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 2006;25:7225–34.

    Article  PubMed  CAS  Google Scholar 

  7. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008;7:110–20.

    Article  PubMed  CAS  Google Scholar 

  8. Cukierman E, Khan DR. The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem Pharmacol. 2010;80:762–70.

    Article  PubMed  CAS  Google Scholar 

  9. Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572–9.

    Article  PubMed  CAS  Google Scholar 

  10. Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block-copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.

    Article  CAS  Google Scholar 

  11. Kwon GS, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Biodistribution of micelle-forming polymer-drug conjugates. Pharm Res. 1993;10:970–4.

    Article  PubMed  CAS  Google Scholar 

  12. Kwon GS, Naito M, Kataoka K, Yokoyama M, Sakurai Y, Okano T. Block copolymer micelles as vehicles for hydrophobic drugs. Colloids Surf B Biointerfaces. 1994;2:429–34.

    Article  CAS  Google Scholar 

  13. Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev. 2008;60:899–914.

    Article  PubMed  CAS  Google Scholar 

  14. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  PubMed  CAS  Google Scholar 

  15. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Naito M, Kataoka K. Influencing factors on in-vitro micelle stability of adriamycin-block copolymer conjugates. J Control Release. 1994;28:59–65.

    Article  CAS  Google Scholar 

  16. Gao ZS, Eisenberg A. A model of micellization for block-copolymers in solutions. Macromolecules. 1993;26:7353–60.

    Article  CAS  Google Scholar 

  17. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloid Surf B. 1999;16:3–27.

    Article  CAS  Google Scholar 

  18. West KR, Otto S. Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol. 2005;2:123–60.

    Article  PubMed  CAS  Google Scholar 

  19. Cammas S, Kataoka K. Functional poly[(ethylene oxide)-co-(beta-benzyl-l-aspartate)] polymeric micelles—block-copolymer synthesis and micelles formation. Macromol Chem Phys. 1995;196:1899–905.

    Article  CAS  Google Scholar 

  20. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.

    Article  PubMed  CAS  Google Scholar 

  21. Lee HJ, Ponta A, Bae Y. Polymer nanoassemblies for cancer treatment and imaging. Ther Deliv. 2010;1:803–17.

    Article  CAS  Google Scholar 

  22. Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and ph-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst. 2005;1:242–50.

    Article  PubMed  CAS  Google Scholar 

  23. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61:768–84.

    Article  PubMed  CAS  Google Scholar 

  24. Jones AT, Gumbleton M, Duncan R. Understanding endocytic pathways and intracellular trafficking: a prerequisite for effective design of advanced drug delivery systems. Adv Drug Deliv Rev. 2003;55:1353–7.

    Article  PubMed  CAS  Google Scholar 

  25. Vander Heiden MG, Thompson CB, Cantley LC. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  PubMed  CAS  Google Scholar 

  26. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49:24s–42s.

    Article  PubMed  CAS  Google Scholar 

  27. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K. Preparation of micelle-forming polymer-drug conjugates. Bioconjugate Chem. 1992;3:295–301.

    Article  CAS  Google Scholar 

  28. Ponta A, Bae Y. Peg-poly(amino acid) block copolymer micelles for tunable drug release. Pharm Res. 2010;27:2330–42.

    Article  PubMed  CAS  Google Scholar 

  29. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev. 1997;26:71–90.

    Article  PubMed  CAS  Google Scholar 

  30. Wexler EJ, Gravallese EM, Czerniak PM, Devenny JJ, Longtine J, Wong MK, et al. Tumor biology: use of tiled images in conjunction with measurements of cellular proliferation and death in response to drug treatments. Clin Cancer Res. 2000;6:3361–70.

    PubMed  CAS  Google Scholar 

  31. Bae Y, Nishiyama N, Fukushima S, Koyama H, Matsumura Y, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular ph-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem. 2005;16:122–30.

    Article  CAS  Google Scholar 

  32. Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release. 2000;64:143–53.

    Article  PubMed  CAS  Google Scholar 

  33. Suzuki H, Nakai D, Seita T, Sugiyama Y. Design of a drug delivery system for targeting based on pharmacokinetic consideration. Adv Drug Deliv Rev. 1996;19:335–57.

    Article  CAS  Google Scholar 

  34. Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res. 1996;13:820–31.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This research is supported by the Kentucky Lung Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younsoo Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akter, S., Clem, B.F., Lee, H.J. et al. Block Copolymer Micelles for Controlled Delivery of Glycolytic Enzyme Inhibitors. Pharm Res 29, 847–855 (2012). https://doi.org/10.1007/s11095-011-0613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0613-4

KEY WORDS

Navigation