Skip to main content
Log in

Liver Cancer Targeting of Doxorubicin with Reduced Distribution to the Heart Using Hematoporphyrin-Modified Albumin Nanoparticles in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the usefulness of hematoporphyrin (HP)-modification of the surface of doxorubicin (DOX)-loaded bovine serum albumin (BSA) nanoparticles (NPs) in the liver cancer-selective delivery of DOX.

Methods

HP-modified NPs (HP-NPs) were prepared by conjugation of amino groups on the surface of NPs with HP, a ligand for low density lipoprotein (LDL) receptors on the hepatoma cells. In vitro cellular accumulation of DOX, in vivo biodistribution of DOX, safety, and anti-tumor efficacy were evaluated for HP-NPs.

Results

Cytotoxicity and accumulation of DOX were in the order of HP-NPs>NPs>solution form (SOL). Cellular uptake from HP-NPs was proportional to the expression level of LDL receptors on the cells, indicating possible involvement of LDL receptor-mediated endocytosis (RME) in uptake. The “merit index,” an AUC ratio of DOX in liver (target organ) to DOX in heart (major side effect organ) following iv administration of HP-NPs to hepatoma rats, was 132.5 and 4 times greater compared to SOL and NPs, respectively. The greatest suppression of body weight decrease and tumor size increase was observed for iv-administered HP-NPs in tumor-bearing mice.

Conclusions

HP modification appears to be useful in selective delivery of NP-loaded DOX to tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

25-HC:

25-hydroxycholesterol

BSA:

bovine serum albumin

DOX:

doxorubicin

HP:

hematoporphyrin

HP-NP:

hematoporphyrin-modified, doxorubicin-loaded nanoparticle

NP:

doxorubicin-loaded nanoparticle

SOL:

doxorubicin solution

REFERENCES

  1. Olweny C, Toya T, Katongole-Mbidde E, Mugerwa J, Kyalwazi S, Cohen H. Treatment of hepatocellular carcinoma with adriamycin. Preliminary communication. Cancer. 1975;36:1250–7.

    Article  PubMed  CAS  Google Scholar 

  2. Yang T, Wang C, Hsieh R, Chen J, Fung M. Gemcitabine and doxorubicin for the treatment of patients with advanced hepatocellular carcinoma: a phase I-II trial. Ann Oncol. 2002;13:1771–8.

    Article  PubMed  CAS  Google Scholar 

  3. Park J, Fong P, Lu J, Russell K, Booth C, Saltzman W, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomed Nanotechnol Biol Med. 2009;5:410–8.

    Article  CAS  Google Scholar 

  4. Li C. Poly (-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev. 2002;54:695–713.

    Article  PubMed  CAS  Google Scholar 

  5. Maeng J, Lee D, Jung K, Bae Y, Park I, Jeong S, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 2010;31:4995–5006.

    Article  PubMed  CAS  Google Scholar 

  6. Gieseler F, Rudolph P, Kloeppel G, Foelsch U. Resistance mechanisms of gastrointestinal cancers: why does conventional chemotherapy fail? Int J Colorectal Dis. 2003;18:470–80.

    Article  PubMed  CAS  Google Scholar 

  7. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–51.

    Article  PubMed  CAS  Google Scholar 

  8. Na K, Lee B. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci. 2003;18:165–73.

    Article  PubMed  CAS  Google Scholar 

  9. Brannon-Peppas L, Blanchette J. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59.

    Article  PubMed  CAS  Google Scholar 

  10. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30:226–32.

    Article  PubMed  Google Scholar 

  11. Green M, Manikhas G, Orlov S, Afanasyev B, Makhson A, Bhar P, et al. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17:1263–8.

    Article  PubMed  CAS  Google Scholar 

  12. Liang H, Chen C, Chen S, Kulkarni A, Chiu Y, Chen M, et al. Paclitaxel-loaded poly (γ-glutamic acid)-poly (lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 2006;27:2051–9.

    Article  PubMed  CAS  Google Scholar 

  13. Berg K, Selbo P, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, et al. Porphyrin related photosensitizers for cancer imaging and therapeutic applications. J Microsc. 2005;218:133–47.

    Article  PubMed  CAS  Google Scholar 

  14. Isakau H, Parkhats M, Knyukshto V, Dzhagarov B, Petrov E, Petrov P. Toward understanding the high PDT efficacy of chlorin e6-polyvinylpyrrolidone formulations: Photophysical and molecular aspects of photosensitizer-polymer interaction in vitro. J Photochem Photobiol B Biol. 2008;92:165–74.

    Article  CAS  Google Scholar 

  15. Yang S, Chang J, Shin B, Park S, Na K, Shim C. 99mTc-hematoporphyrin linked albumin nanoparticles for lung cancer targeted photodynamic therapy and imaging. J Mater Chem. 2010;20:9042–6.

    Article  CAS  Google Scholar 

  16. Dreis S, Rothweiler F, Michaelis M, Cinatl J, Kreuter J, Langer K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm. 2007;341:207–14.

    Article  PubMed  CAS  Google Scholar 

  17. Weber C, Kreuter J, Langer K. Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm. 2000;196:197–200.

    Article  PubMed  CAS  Google Scholar 

  18. Hamblin M, Newman E. Photosensitizer targeting in photodynamic therapy I. Conjugates of haematoporphyrin with albumin and transferrin. J Photochem Photobiol B Biol. 1994;26:45–56.

    Article  CAS  Google Scholar 

  19. Nam Y, Kang H, Park J, Park T, Han S, Chang I. New micelle-like polymer aggregates made from PEI-PLGA diblock copolymers: micellar characteristics and cellular uptake. Biomaterials. 2003;24:2053–9.

    Article  PubMed  CAS  Google Scholar 

  20. Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm. 2000;194:91–102.

    Article  PubMed  CAS  Google Scholar 

  21. Lim S, Kim C. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm. 2002;243:135–46.

    Article  PubMed  CAS  Google Scholar 

  22. Merodio M, Arnedo A, Renedo M, Irache J. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci. 2001;12:251–9.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou Q, Chowbay B. Determination of doxorubicin and its metabolites in rat serum and bile by LC: application to preclinical pharmacokinetic studies. J Pharm Biomed Anal. 2002;30:1063–74.

    Article  PubMed  CAS  Google Scholar 

  24. Mu L, Feng S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003;86:33–48.

    Article  PubMed  CAS  Google Scholar 

  25. Yoo H, Lee K, Oh J, Park T. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release. 2000;68:419–31.

    Article  PubMed  CAS  Google Scholar 

  26. Janes K, Fresneau M, Marazuela A, Fabra A, Alonso M. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–67.

    Article  PubMed  CAS  Google Scholar 

  27. Yoo H, Park T. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release. 2001;70:63–70.

    Article  PubMed  CAS  Google Scholar 

  28. Panyam J, Zhou W, Prabha S, Sahoo S, Labhasetwar V. Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.

    Article  PubMed  CAS  Google Scholar 

  29. Lin W, Tsai S, Hsieh J, Wang S. Effects of 90Y-microspheres on liver tumors: comparison of intratumoral injection method and intra-arterial injection method. J Nucl Med. 2000;41:1892–7.

    PubMed  CAS  Google Scholar 

  30. Jaroszeski M, Gilbert R, Heller R. In vivo antitumor effects of electrochemotherapy in a hepatoma model. Biochim Biophys Acta-General Subjects. 1997;1334:15–8.

    Article  CAS  Google Scholar 

  31. Han Y, Chung S, Shim C. Canalicular membrane transport is primarily responsible for the difference in hepatobiliary excretion of triethylmethylammonium and tributylmethylammonium in rats. Drug Metab Dispos. 1999;27:872–9.

    PubMed  CAS  Google Scholar 

  32. Vos T, Caracoti A, Che J, Dai M, Farrer C, Forsyth N, et al. Identification of 2-{2-(2-(5-bromo-2-methoxyphenyl)-ethyl)-3-fluorophenyl}-4, 5-dihydro-1H-imidazole (ML00253764), a small molecule melanocortin 4 receptor antagonist that effectively reduces tumor-induced weight loss in a mouse model. J Med Chem. 2004;47:1602–4.

    Article  PubMed  CAS  Google Scholar 

  33. Allison B, Pritchard P, Levy J. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br J Cancer. 1994;69:833–9.

    Article  PubMed  CAS  Google Scholar 

  34. Srivastava R, Ito H, Hess M, Srivastava N, Schonfeld G. Regulation of low density lipoprotein receptor gene expression in HepG2 and Caco2 cells by palmitate, oleate, and 25-hydroxycholesterol. J Lipid Res. 1995;36:1434–46.

    PubMed  CAS  Google Scholar 

  35. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95:4607–12.

    Article  PubMed  CAS  Google Scholar 

  36. Barel A, Jori G, Perin A, Romandini P, Pagnan A, Biffanti S. Role of high-, low-and very low-density lipoproteins in the transport and tumor-delivery of hematoporphyrin in vivo. Cancer Lett. 1986;32:145–50.

    Article  PubMed  CAS  Google Scholar 

  37. Yi Y, Kim JH, Kang HW, Oh HS, Kim SW, Seo MH. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution. Pharm Res. 2005;22:200–8.

    Article  PubMed  CAS  Google Scholar 

  38. Gao ZG, Tian L, Hu J, Park IS, Bae YH. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release. 2011;152:84–9.

    Google Scholar 

  39. Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem. 1994;5:105–13.

    Article  PubMed  CAS  Google Scholar 

  40. Kamps J, Kruijt JK, Kuiper J, Van Berkel T. Uptake and degradation of human low-density lipoprotein by human liver parenchymal and Kupffer cells in culture. Biochem J. 1991;276:135–40.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by a grant from the Korean Ministry of Science and Technology through the National Research Laboratory Program (Grant Number ROA-2006-000-10290-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Koo Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JE., Shim, WS., Yang, SG. et al. Liver Cancer Targeting of Doxorubicin with Reduced Distribution to the Heart Using Hematoporphyrin-Modified Albumin Nanoparticles in Rats. Pharm Res 29, 795–805 (2012). https://doi.org/10.1007/s11095-011-0603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0603-6

KEY WORDS

Navigation