Skip to main content

Advertisement

Log in

Investigations into the Fate of Inhaled Salmon Calcitonin at the Respiratory Epithelial Barrier

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The fate of inhaled salmon calcitonin (sCT) at the respiratory epithelial barrier was studied with particular emphasis on enzymatic degradation by trypsin, chymotrypsin, and neutrophil elastase.

Methods

Degradation of sCT was assessed by HPLC in cell homogenate, supernatant and intact monolayers of human respiratory epithelial cells (hBEpC, Calu-3, 16HBE14o-, A549) and Caco-2 as comparison at 37°C for 2 h. Breakdown of sCT by trypsin, chymotrypsin and neutrophil elastase was investigated. The presence of enzymes in cell supernatant and homogenate was studied by immunoblot and enzyme activity by model substrate assay. Transport studies across Calu-3 monolayers were performed.

Results

sCT concentration remained unchanged over 2 h, when incubated in supernatant or with cell monolayers, independent of cell type studied. When cell homogenates were used, sCT concentrations were reduced to varying extents. sCT was degraded when incubated with enzymes alone. Western blot revealed abundance of all proteinases in cell homogenates and weaker expression in supernatants. Transport studies indicated net-absorptive sCT translocation; presence of bacitracin resulted in increased amount of sCT in receiver compartments.

Conclusions

Epithelial proteases play a role in the disposition of sCT after pulmonary delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Stevenson CL. Advances in peptide pharmaceuticals. Curr Pharm Biotechnol. 2009;10(1):122–37.

    Article  PubMed  CAS  Google Scholar 

  2. Patton JS, Brain JD, Davies LA, Fiegel J, Gumbleton M, Kim KJ, et al. The particle has landed–characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv. 2010;23 Suppl 2:S71–87.

    PubMed  CAS  Google Scholar 

  3. Patton JS, Platz RM. (D) Routes of delivery: Case studies: (2) Pulmonary delivery of peptides and proteins for systemic action. Adv Drug Deliv Rev. 1992;8(2–3):179–96.

    Article  CAS  Google Scholar 

  4. Woodley J. Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst. 1994;11(2–3):61–95.

    PubMed  CAS  Google Scholar 

  5. Baginski L, Tachon G, Falson G, Patton J, Bakowsky U, Ehrhardt C. Reverse transcription polymerase chain reaction (RT-PCR) analysis of proteolytic enzymes in cultures of human respiratory epithelial cells. J Aerosol Med Pulm Drug Deliv. 2011;24(2):89–101.

    Article  PubMed  CAS  Google Scholar 

  6. Patton JS. Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev. 1996;19(1):3–36.

    Article  CAS  Google Scholar 

  7. Dershwitz M, Walsh J, Morishige R, Connors P, Rubsamen R, Shafer S, et al. Pharmacokinetics and pharmacodynamics of inhaled versus intravenous morphine in healthy volunteers. Anesthesiology. 2000;93(3):619–28.

    Article  PubMed  CAS  Google Scholar 

  8. Patton J, Byron P. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  9. Bernkop-Schnürch A, Kast C, Guggi D. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release. 2003;93(2):95–103.

    Article  PubMed  Google Scholar 

  10. Lang S, Staudenmann W, James P, Manz H, Kessler R, Galli B, et al. Proteolysis of human calcitonin in excised bovine nasal mucosa: elucidation of the metabolic pathway by liquid secondary ionization mass spectrometry (LSIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI). Pharm Res. 1996;13(11):1679–85.

    Article  PubMed  CAS  Google Scholar 

  11. Dohi M, Nishibe Y, Makino Y, Suzuki Y, editors. Enzymatic barrier to nasal delivery of salmon calcitonin in rabbits. Proceedings of the International Symposium Control on Relative Society. Kyoto, Japan: 1993.

  12. Guggi D, Bernkop-Schnürch A. In vitro evaluation of polymeric excipients protecting calcitonin against degradation by intestinal serine proteases. Int J Pharm. 2003;252(1–2):187–96.

    Article  PubMed  CAS  Google Scholar 

  13. Reid P, Marsden M, Cunningham G, Haslett C, Sallenave J. Human neutrophil elastase regulates the expression and secretion of elafin (elastase-specific inhibitor) in type II alveolar epithelial cells. FEBS Lett. 1999;457(1):33–7.

    Article  PubMed  CAS  Google Scholar 

  14. Fogh J, Trempe G. New human tumor cell lines. In: Fogh J, editor. Human tumor cells in vitro. New York: Plenum; 1975. p. 115–59.

    Google Scholar 

  15. Giard D, Aaronson S, Todaro G, Arnstein P, Kersey J, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Canc Inst. 1973;51(5):1417–23.

    CAS  Google Scholar 

  16. Sporty J, Horálková L, Ehrhardt C. In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin Drug Metab Toxicol. 2008;4(4):333–45.

    Article  PubMed  CAS  Google Scholar 

  17. Schwert G, Takenaka Y. A spectrophotometric determination of trypsin and chymotrypsin. Biochim Biophys Acta. 1955;16(4):570–5.

    Article  PubMed  CAS  Google Scholar 

  18. Cotter T, Robinson G. Purification and characterisation of an ‘elastase-like’ enzyme from rabbit polymorphonuclear leucocytes. Biochim Biophys Acta. 1980;615(2):414–25.

    PubMed  CAS  Google Scholar 

  19. Visser L, Blout E. The use of p-nitrophenyl N-tert-butyloxycarbonyl-L-alaninate as substrate for elastase. Biochim Biophys Acta. 1972;268(1):257–60.

    PubMed  CAS  Google Scholar 

  20. Shah R, Khan M. Protection of salmon calcitonin breakdown with serine proteases by various ovomucoid species for oral drug delivery. J Pharm Sci. 2004;93(2):392–406.

    Article  PubMed  CAS  Google Scholar 

  21. Kobayashi S, Kondo S, Juni K. Study on pulmonary delivery of salmon calcitonin in rats: effects of protease inhibitors and absorption enhancers. Pharm Res. 1994;11(9):1239–43.

    Article  PubMed  CAS  Google Scholar 

  22. Bernkop-Schnürch A. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release. 1998;52(1–2):1–16.

    Article  PubMed  Google Scholar 

  23. Yamahara H, Lehr C, Lee V, Kim K. Fate of insulin during transit across rat alveolar epithelial cell monolayers. Eur J Pharm Biopharm. 1994;40:294–8.

    CAS  Google Scholar 

  24. Forbes B, Wilson CG, Gumbleton M. Temporal dependence of ectopeptidase expression in alveolar epithelial cell culture: implications for study of peptide absorption. Int J Pharm. 1999;180(2):225–34.

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi S, Kondo S, Juni K. Pulmonary delivery of salmon calcitonin dry powders containing absorption enhancers in rats. Pharm Res. 1996;13(1):80–3.

    Article  PubMed  CAS  Google Scholar 

  26. Kawabata K, Hagio T, Matsuoka S. The role of neutrophil elastase in acute lung injury. Eur J Pharmacol. 2002;451(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  27. Sun Z, Yang P. Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol. 2004;5(3):182–90.

    Article  PubMed  CAS  Google Scholar 

  28. Amelinckx A, Whitney P, Santos N, Lascano J, Salathe M, Conner G, et al. Regulation and anti-elastase activity of locally produced alpha-1-antitrypsin by well differentiated normal airway epithelial cells: a comparison with SLPI. Am J Respir Crit Care Med. 2010;181:A4158.

    Google Scholar 

  29. Wall DA, Lanutti AT. High levels of exopeptidase activity are present in rat and canine bronchoalveolar lavage fluid. Int J Pharm. 1993;97:171–81.

    Article  CAS  Google Scholar 

  30. Lang S, Rothen-Rutishauser B, Perriard JC, Schmidt MC, Merkle HP. Permeation and pathways of human calcitonin (hCT) across excised bovine nasal mucosa. Peptides. 1998;19(3):599–607.

    Article  PubMed  CAS  Google Scholar 

  31. Gaudiano MC, Colone M, Bombelli C, Chistolini P, Valvo L, Diociaiuti M. Early stages of salmon calcitonin aggregation: effect induced by ageing and oxidation processes in water and in the presence of model membranes. Biochim Biophys Acta. 2005;1750(2):134–45.

    PubMed  CAS  Google Scholar 

  32. Youn Y, Jung J, Oh S, Yoo S, Lee K. Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J Control Release. 2006;114(3):334–42.

    Article  PubMed  CAS  Google Scholar 

  33. Song K, Chung S, Shim C. Enhanced intestinal absorption of salmon calcitonin (sCT) from proliposomes containing bile salts. J Control Release. 2005;106(3):298–308.

    Article  PubMed  CAS  Google Scholar 

  34. Torres-Lugo M, García M, Record R, Peppas NA. pH-Sensitive hydrogels as gastrointestinal tract absorption enhancers: transport mechanisms of salmon calcitonin and other model molecules using the Caco-2 cell model. Biotechnol Prog. 2002;18(3):612–6.

    Article  PubMed  CAS  Google Scholar 

  35. Tréhin R, Krauss U, Beck-Sickinger A, Merkle H, Nielsen H. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47–57) through well-differentiated epithelial models. Pharm Res. 2004;21(7):1248–56.

    Article  PubMed  Google Scholar 

  36. Patton JS, Trinchero P, Platz RM. Bioavailability of pulmonary delivered peptides and proteins: [alpha]-interferon, calcitonins and parathyroid hormones. J Control Release. 1994;28(1–3):79–85.

    Article  CAS  Google Scholar 

  37. Clark A, Kuo MC, Newman S, Hirst P, Pitcairn G, Pickford M. A comparison of the pulmonary bioavailability of powder and liquid aerosol formulations of salmon calcitonin. Pharm Res. 2008;25(7):1583–90.

    Article  PubMed  CAS  Google Scholar 

  38. Lewiecki EM. Emerging drugs for postmenopausal osteoporosis. Expert Opin Emerg Drugs. 2009;14(1):129–44.

    Article  PubMed  CAS  Google Scholar 

  39. Youn YS, Kwon MJ, Na DH, Chae SY, Lee S, Lee KC. Improved intrapulmonary delivery of site-specific PEGylated salmon calcitonin: optimization by PEG size selection. J Control Release. 2008;125(1):68–75.

    Article  PubMed  CAS  Google Scholar 

  40. Lombry C, Edwards DA, Préat V, Vanbever R. Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules. Am J Physiol Lung Cell Mol Physiol. 2004;286(5):L1002–8.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS & DISCLOSURES

This work was funded by a Strategic Research Cluster grant (07/SRC/B1154) under the National Development Plan co-funded by EU Structural Funds and Science Foundation Ireland. S.T.B. is funded by an IRCSET Government of Ireland Postgraduate Scholarship in Science, Engineering and Technology. U.B. is funded by the DFG Forschergruppe Nanohale 627.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Ehrhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baginski, L., Tewes, F., Buckley, S.T. et al. Investigations into the Fate of Inhaled Salmon Calcitonin at the Respiratory Epithelial Barrier. Pharm Res 29, 332–341 (2012). https://doi.org/10.1007/s11095-011-0553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0553-z

KEY WORDS

Navigation